Effective Induction of Apoptosis by Mistletoe Plant Extracts in an Acute Lymphoblastic Leukemia Model.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1880-1880
Author(s):  
Georg Seifert ◽  
Patrick Jesse ◽  
Aram Prokop ◽  
Tobias Reindl ◽  
Stephan Lobitz ◽  
...  

Abstract Mistletoe (Viscum album) is one of the most used alternative cancer therapies applied as monotherapy or in combination with conventional therapies. Anti-tumor effects of mistletoe (MT) extracts were related to cytostatic and immunomodulatory effects observed in vitro. Aqueous MT extracts contain the three mistletoe lectins I, II and III as one predominant group of biologically active agents. The MT lectins inhibit protein biosynthesis by inactivating the 60S ribosomal subunit. Mistletoe lectin-I (ML-I) is one important apoptosis inducing compound. It is a heterodimer that consists of a cytotoxic A-chain (ribosome inactivating protein, RIP type 1) linked by a carbohydrate binding B-chain for cellular lectin uptake. However, although MT is widely used, there is a lack of scientific preclinical and clinical data. Here, we describe for the first time efficacy and mechanism of MT extracts against lymphoblastic leukemia in vitro and in vivo. For this purpose, we first investigated both the cytotoxic effect and mechanism of action of two standardized aqueous MT extracts (MT obtained from fir trees (MT-A); MT obtained from pine trees (MT-P)) and isolated ML-I, in three human acute lymphoblastic leukemia (ALL) cell lines (NALM-6, sup-B-15 and REH). MT-A, MT-P and ML-I clearly inhibited cell proliferation as determined by LDH reslease assays at very low concentrations (ML-I LD50 from 0,05 ng/ml to 10 ng/ml depending on the host tree) with MT-P being the most cytotoxic extract. The mechanism of cell death was determined by DNA-fragmentation assays. These indicated dose dependent induction of apoptosis as the main mechanism of cell death. Finally, we evaluated the efficacy of MT-A and MT-P in an in vivo SCID-model of pre-B ALL (NALM-6). For this purpose, mice (n=8/group) were injected i.v. with 1 × 106NALM6 cells and treated by intraperitoneal injections four times per week for 3 weeks (day 1–4; 7–11; 14–18) at varying doses (1, 5 and 50 mg/Kg (plant weight/body weight)). Mice (n=8) treated with PBS and cyclophosphamide (100 mg/kg, once on day 1) were used as negative and positive controls, respectively. Toxicity, peripheral blood counts, bodyweight and survival was determined over time. Interestingly, both MT extracts in all tested concentrations significantly improved survival (up to 55,4 days) in contrast to controls (34,6 days). Furthermore, no hematologic side effects were observed from this treatment as indicated by completely stable blood counts. Also the body weight of treated animals remained stable over time indicating a complete absence of systemic toxicity in the selected dose range. In summary, we demonstrate for the first time efficacy and mechanism of MT extracts against ALL in vitro and in vivo and hereby provide an important base line for the design of clinical trials with these compounds.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3261-3261
Author(s):  
Catharina I. Delebinski ◽  
Sebastian Jaeger ◽  
Kristin Kemnitz-Hassanin ◽  
Arend von Stackelberg ◽  
Günter Henze ◽  
...  

Abstract Abstract 3261 Viscum album L. (mistletoe) is one of the most widely used complementary cancer therapies. Due to their low solubility, aqueous extracts contain hardly any triterpenes which are known to possess anti-tumoral properties. Using cyclodextrins it was possible to solubilisate mistletoe triterpenes (mainly oleanolic acid (OA)) and achieve a plant extract with high levels of OA and mistletoe lectins (ML). In the present study, we determined for the first time the effect of clearly defined mistletoe extracts against human acute lymphoblastic leukemia (ALL) in vitro and in vivo. These mistletoe extracts contain either lectins (aqueous extract, viscum) or cyclodextrin solubilised triterpenes (STE) such as oleanolic - and betulinic acid and combinations thereof (viscumTT). We used the C.B-17/SCID mouse model and tested efficacy and mechanisms of the treatment with these preparations in vitro and in vivo. The human leukemia cell line NALM-6 was incubated with increasing concentrations of mistletoe preparations (10-60 μg/ml OA; 0.8–8 ng/ml ML) and tested for their cytotoxicity in vitro. Apoptosis was determined using mitochondrial potential, DNA fragmentation and Annexin/PI assays. In vivo efficacy was determined in the C.B-17/SCID mouse model. For this purpose, 1×106 NALM-6 cells were injected IV into groups of C.B-17/SCID mice (n=8) and STE extracts were administered three times per week for 14 days by intraperitoneal (IP) injection. Viscum album L. extracts inhibited cell proliferation and show cytotoxic properties in vitro. The highest level of apoptosis with a decrease of the mitochondrial potential was observed with STE preparation at a concentration of 50 μg/ml OA and for lectin-treated cells for 4.7 ng/ml (IC50). To exclude an unwanted cell death via necrosis, LDH release was measured after 4h of incubation with different doses and extracts of Viscum album L without significant LDH release. Based on these data, we investigated the effect of Viscum album L. extracts in vivo. For this purpose 40 mg/kg/day oleanolic acid (STE), 3 μg/kg/day lectin (viscum) or a combination thereof (viscumTT) were administered IP. In line with the in vitro results, mice treated with viscumTT showed a significant longer survival. Mice receiving PBS had a mean survival time of 38 days whereas mice treated with viscumTT had a mean survival of 50,5 days (p=0,005). In summary, we demonstrate for the first time that either solubilised triterpenes or lectins and combinations thereof induce dose- and time-dependent apoptosis in the ALL cell line NALM-6. Based on the in vivo data we believe that triterpene containing Viscum album L. extracts may possess an impressive therapeutic potential. Thus, our investigations provide an important base line for the design of further experimental studies and clinical trials to investigate the effects of individual components and potential synergisms in ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 859-859
Author(s):  
Ningxi Zhu ◽  
Lubing Gu ◽  
Harry W. Findley ◽  
Kuang-Yueh Chiang ◽  
Muxiang Zhou

Abstract Although the cytotoxic effect of vitamin K3 (VK3) on human cancer cells has been repeatedly reported, no clear conclusions from either in vitro or in vivo tests have so far been made for VK3 as an anticancer agent due to marked inter-tumor variability of efficacy in response to VK3 treatment. Here, we report that sensitivity of neoplastic cells to VK3-induced killing depends on IKKα expression/NF-kB activation in the cells. We tested the sensitivity to VK3 of 14 leukemic cell lines established from children with acute lymphoblastic leukemia (ALL). The 14 lines were classified into three groups: IKKα +/NF-kB+, IKKα +/NF-kB−, IKKα−/NF-kB−. IKKα +/NFkB+ cell lines that are generally resistant to doxorubicin are more sensitive to VK3 induced cell death than are the IKKα +/NFkB− lines that are usually sensitive to doxorubicin. The median of IC 50 values of VK3 and doxorubicin as tested by WST analysis for IKKα +/NFkB+ cells were 3.92 mM and 1.58 mM, respectively, compared to IKKα +/NFkB− cells (7.3 mM of VK3 and 0.71 mM of doxorubicin, p<0.01, t-test). Assays by testing activation of caspase and cleavage of death substrate PARP as well as flow cytometry showed that apoptosis was induced in a line with high levels of IKKα/NF-kB activation at 2 h after VK3 treatment. In contrast, apoptosis was not induced by VK3 even at 48 h post-treatment in two lines that lack IKKa expression and NF-kB activation. To test if IKKα/NF-kB is a molecular target of VK3 inducing apoptosis in ALL, we examined the expression and activation of IKKα/NF-kB in VK3-treated cells. VK3 specifically reduced IKKα expression and inhibited NF-kB activation, resulting in downregulation of NF-kB-mediated gene expression and apoptosis. These results suggest that inhibition of IKKα/NF-kB signaling pathway is essential for VK3 to induce cell death, and that VK3, a dietary factor with no cytotoxic effect on normal cells, would be a useful adjuvant in the treatment of ALL and other cancer patients whose neoplastic cells express constitutive NF-kB and are resistant to chemotherapy.


Blood ◽  
2020 ◽  
Author(s):  
Justine Elizabeth Roderick ◽  
Kayleigh Mary Gallagher ◽  
Leonard C Murphy ◽  
Kevin W O'Connor ◽  
Katherine Tang ◽  
...  

Glucocorticoid (GC) resistance remains a clinical challenge in pediatric acute lymphoblastic leukemia (ALL) where response to GC is a reliable prognostic indicator. To identify GC resistance pathways, we conducted a genome-wide, survival-based, shRNA screen in murine T cell acute lymphoblastic leukemia (T-ALL) cells. Genes identified in the screen interfere with cAMP signaling and are under-expressed in GC resistant or relapsed ALL patients. Silencing of the cAMP activating guanine nucleotide binding protein, alpha stimulating Gnas gene, interfered with GC-induced gene expression, resulting in dexamethasone resistance in vitro and in vivo. We demonstrate that cAMP signaling synergizes with dexamethasone to enhance cell death in GC resistant human T-ALL cells. We find the E prostanoid receptor 4 expressed in T-ALL samples and demonstrate that Prostaglandin E2 (PGE2) increases intracellular cAMP, potentiates GC-induced gene expression and sensitizes human T-ALL samples to dexamethasone in vitro and in vivo. These findings identify PGE2 as a target for GC re-sensitization in relapsed pediatric T-ALL.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2251-2251 ◽  
Author(s):  
Aradhana Awasthi ◽  
Janet Ayello ◽  
Carmella van de Ven ◽  
Mona Elmacken ◽  
Christopher Reggio ◽  
...  

Abstract Background: Aggressive non-Hodgkin lymphoma (NHL) represents >90% of all NHL that occur in children and adolescents. Among all NHLs, Burkitt Lymphoma (BL) is the most common NHL in children and adolescents and has an excellent prognosis (≥80% 5 yrs, EFS) following short but intense multi-agent chemotherapy (Cairo et al. Blood, 2007). Patients who relapse with CD20+ B-NHL and B cell Acute lymphoblastic leukemia (B-ALL) have a dismal prognosis, often associated with chemotherapy resistance and may require alternative therapeutic strategies (Cairo et al. JCO, 2012, Barth/Cairo et al. BJH, 2013). Rituximab (RTX) in combination with FAB 96 chemotherapy is a safe and well-tolerated and is associated with >90% EFS in children with newly diagnosed and advanced mature B-Cell NHL (Goldman/Cairo et al. Leukemia, 2013). Resistance to RTX, however, may predispose patients with CD20+ B-NHL/ALL to an increase risk of relapse and/or disease progression (Barth/Cairo et al. BJH, 2012; Tsai et al. Cl. Can. Res, 2012,). Obinutuzumab, a novel glycoengineered type II CD20 antibody, has been shown to enhance cell death and ADCC vs. RTX (Herter et al, Clinc Canc Res, 2013), and was recently approved by FDA and EMA for first line treatment of CLL in combination with chlorambucil. Objective: To evaluate anti-tumor activity of obinutuzumab vs RTX against RTX resistant and sensitive BL and pre-B-ALL tumor targets in-vitro and in-vivo in xenografted NSG mice. Methods: Raji (CD20+) and Loucy (T-ALL, CD20-), (ATCC, Manhass, VA), U698-M (CD20+, DSMZ, Germany) and Raji-4RH (provided by M. Barth, Roswell Park Cancer Institute) were cultured in RPMI with 10% FBS. For in-vitro studies, tumor cells were incubated with 100 µg/ml obinutuzumab (supplied by Christian Klein, PhD, Roche Research & Early Development, Zurich), and/or RTX for 24 hrs. Cell death was evaluated by staining with AnnexinV/7AAD and analysis by flow-cytometry. Loucy cells (CD20-) were used as the negative control. ADCC were performed with K562-IL-15-41BBL expanded NK cells (Ayello/Cairo et al. ASH, 2010) at 20:1 effector: target ratio (E: T, n=3) using an europium release assay (Perkin-Elmer).The lentiviral construct, pSico PolII-eGFP-Luc2, was transfected into Raji, Raji 4RH (RTX resistant), U698M and Loucy for in vivo evaluation by BLI. Six to 8 week old female NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ), mice, bred in-house under pathogen free conditions, were divided into 5 groups: PBS only (control), isotype control (IgG), obinutuzumab 10 mg/kg, obinutuzumab (30 mg/kg), and RTX (30 mg/kg). Mice were xenografted with intravenous injections of Luc+ Raji, Raji4RH, U698M and Loucy cells at 5x106 tumor cells/mouse. 6-8 days after tumor cell injection, mice were then injected every 7 days with the respective therapy for 8 weeks. Mice were monitored for tumor burden and survival for up to 12 weeks ( approx. 80 days) via bioluminescent imaging (BLI) using the IVIS Spectrum system. Results: Obinutuzumab compared to RTX (100 mg/ml, 24hrs), significantly enhanced cell death in Raji 45.1±3.3% vs 32.7±6.8%, (p=0.005), Raji4RH 15.8±2.2% vs 2.1±1.5% (p=0.001) and U698-M 40.5±2.9 % vs 26.36±2.6% (p=0.001) n=6. Obinutuzumab vs RTX also elicited a significant increase ADCC with K562-IL15-41BBL expanded NK cells, in Raji 73.8±8.1% vs 56.81±4.6% (p=0.001), Raji-4RH 40.0±1.6% vs 0.5±1.1%, (p=0.001), and U-698-M 70.0±6 % vs. 45.56± 0.1% (p=0.001) n=3. Further, we found that, in vivo, obinutuzumab was significantly more effective than RTX when administered at the same doses in BL (RTX resistant/sensitive) and pre-B-ALL xenografts. Overall survival in mice receiving 30 mg/kg of obinutuzumab was significantly increased when compared to mice receiving 30 mg/kg of RTX in BL; Raji (p=0.05), Raji4RH (p=0.024) and U698-M (p=0.03) (Figure1: A, B and C). Conclusion: Obinutuzumab significantly enhances cell death and NK mediates ADCC in sensitive and RTX resistant CD20+ B-NHL and B-ALL compared to RTX. These preliminary studies also demonstrate that RTX sensitive/resistant BL and pre-B-ALL xenografted mice display significantly increased survival when given 30 mg/kg of obinutuzumab and decreased tumor burden in BL and Pre-B-ALL xenografts compared to an equal dose of RTX. Obinutuzumab may be a novel agent to investigate as adjuvant therapy in patients with relapsed refractory CD20+ B-NHL and/or B-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Claudio Agostinelli ◽  
Enrico Derenzini ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Sign in / Sign up

Export Citation Format

Share Document