scholarly journals Overcoming apoptosis resistance in high risk acute lymphoblastic leukemia by SMAC mimetics in a preclinical ALL xenograft model in vivo

2014 ◽  
Vol 1 (Suppl 1) ◽  
pp. A22
Author(s):  
Melanie Schirmer ◽  
Manon Queudeville ◽  
Luca Trentin ◽  
Sarah Eckhoff ◽  
Lüder Meyer ◽  
...  
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1433-1433
Author(s):  
Melanie Schirmer ◽  
Manon Queudeville ◽  
Luca Trentin ◽  
Sarah M Eckhoff ◽  
Lueder H Meyer ◽  
...  

Abstract Intensified treatment of pediatric acute lymphoblastic leukemia (ALL) has lead to increased survival rates of about 80%, however therapy fails in the remaining patients leading to relapse of the disease associated with inferior prognosis. Because treatment failure is, at least in part, due to defects in apoptosis programs, novel therapeutic strategies that counter apoptosis resistance are needed. “Inhibitor of Apoptosis” (IAP) proteins block the apoptosis machinery at a central point and are highly expressed in acute leukemias, thereby providing a target structure for therapeutic intervention. Molecules antagonizing these apoptosis inhibitors, so called SMAC-mimetics, therefore provide a promising strategy to overcome apoptosis deficiency and effectively treat high risk ALL. In this study, we investigated the effects of the small molecule SMAC-mimetic BV6 (kindly provided by Genentech) in B cell precursor- (BCP-) ALL. BV6 showed a clear induction of cell death at nanomolar concentrations in ALL cell lines. ALL cells sensitive for SMAC-mimetic induced cell death showed rapid cIAP degradation, NFkB activation and secretion of TNF-alpha (TNF-a). Interestingly, mitochondrial perturbation and caspase activation could be inhibited by the soluble TNF-a receptor Etanercept indicating the induction of a TNF-a dependent feed forward loop by the SMAC-mimetic BV6. In addition to cell lines, we investigated the effects of BV6 on a series of 42 primary ALL samples isolated from ALL bearing mice of established patient derived NOD/SCID/huALL xenograft leukemias. Intriguingly, upon treatment with the small molecule SMAC mimetic BV6, induction of cell death was observed in a majority of 70% of all individual patient-derived leukemias and BV6 induced cell death was inhibited by Etanercept demonstrating TNF-a dependency also in primary ALL. We previously described that rapid engraftment of ALL cells transplanted onto NOD/SCID mice (short Time To Leukemia, TTLshort) is associated with deficient apoptosis signaling in the ALL cells and indicative for early patient relapse. Importantly, primary xenograft ALL samples with a TTLshort/early relapse phenotype showed increased cell death upon treatment with SMAC-mimetic BV6 and activation of the constitutive deficient apoptosis signaling pathway, demonstrating that SMAC-mimetics induce intact apoptosis signaling in former apoptosis resistant primary ALL cells. Based on theses findings, we further evaluated the in vivo effectivity of the SMAC-mimetic BV6 on high risk ALL using our NOD/SCID/huALL xenograft model in a preclinical setting. ALL bearing recipients were treated with either BV6 or solvent for a given time of two weeks and further investigated for the presence of leukemia. Most interestingly, a significant delay of post-treatment leukemia reoccurrence was observed upon BV6 in vivo treatment along with a profound reduction of tumor load in the recipients compared to solvent treated animals. In a clinical setting, high-risk disease is unlikely to be treated by one compound alone. Therefore, we combined BV6 with multidrug chemotherapy resembling ALL induction treatment and observed a significant delay of ALL reoccurrence and prolonged survival of animals treated with the combination of the SMAC-mimetic and chemotherapy in contrast to chemotherapy alone. Most importantly, concomitant in vivo therapy with Etanercept revoked the cell death sensitizing effect of BV6, both in single treatment and in combination with chemotherapy. This indicates that BV6 induced apoptosis sensitization involves signaling via TNF-a and thereby provides a potential biomarker for the identification of patients who would benefit from SMAC-mimetic treatment. Taken together, we show that the small molecule SMAC-mimetic BV6 induces cell death via a TNF-a loop ex vivo and in vivo in primary patient-derived ALL. Moreover, BV6 is able to overcome apoptosis deficiency of high risk ALL leading to prolonged in vivo survival in a preclinical therapy model of patient-derived ALL xenograft ALL. Thus, induction of cell death by new generation small molecule SMAC-mimetics provides a promising novel strategy for targeted therapy of high-risk acute lymphoblastic leukemia and involvement of TNF-a signaling in BV6-sensitive patients points to its potential use as biomarker indicating effective cell death sensitization. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2542-2542
Author(s):  
Christoph Le Viseur ◽  
Marc Hotfilder ◽  
Annegret Rosemann ◽  
Ronald Stam ◽  
Andre Schrauder ◽  
...  

Abstract Current data on the leukemic stem cell (LSC) compartment in childhood acute lymphoblastic leukemia (ALL) are conflicting. The traditional hypothesis supposed that childhood ALL originates in a lymphoid progenitor cell and this is assumed to be consistent with the overall good treatment responses in pediatric patients. In accordance with this hypothesis, our previous studies failed to detect involvement of immature CD34+CD19− progenitor cells in ALL/t(12;21) (Hotfilder et al., Blood 2002) while high-risk ALL/t(9;22) and t(4;11) appears to originate in a more primitive CD34+CD19− cell (Hotfilder et al., Cancer Res 2005). In order to characterize the leukemia-initiating cell in vivo, we established a mouse xenograft model by serial intrafemoral transplantation of NOD/scid mice with flow sorted subpopulations from childhood ALL. Samples were taken from the bone marrow of children with ALL/t(12;21) (n=1), t(4;11) (n=3) and t(11;19) (n=1) and B-cell precursor ALL without a marker translocation (n=2). Primary transplantations were performed with freshly thawed unsorted cells, followed by secondary, tertiary and quaternary transplantations with flow sorted populations. Human leukemic engraftment was defined by a proportion of >5% human CD45+ cells in the murine bone marrow that simultaneously express CD34 and/or CD19. From the bone marrow of leukemic mice, we isolated different leukemic populations and successfully re-transplanted 2×103 − 1×105 CD34+CD19− cells, 2×104 − 6×106 CD34+CD19+ lymphoid progenitors and 3×104 − 2×106 more differentiated CD34−CD19+ blasts onto secondary, tertiary and quaternary mice (average purity after flow sorting: >96%). So far, we detected leukemic engraftment in 60 of 161 (37%) transplanted mice (with many mice - having only recently been transplanted - still alive). These include 7 of 36 (19%) mice engrafted with CD34+CD19− cells, 33 of 72 (46%) mice engrafted with CD34+CD19+ cells and 20 of 53 (38%) mice engrafted with CD34−CD19+ cells. With as few as 2 × 103 CD34+CD19− cells being sufficient to re-initiate the leukemia, this intrafemoral ALL-NOD/scid mouse model represents a very sensitive functional assay for candidate LSC in childhood ALL. We have initiated limiting dilution experiments with the different subpopulations to quantify LSC frequency in the different compartments and to exclude that low levels of contaminating blasts with an immunophenotype different from the main transplanted cell population blurred the results. We are also currently investigating whether there is heterogeneity in the CD34+CD19− compartment in respect to standard and high-risk ALL. Altogether, our data indicate that all three subpopulations, CD34+CD19−, CD34+CD19+ and CD34−CD19+ cells, may have the capacity to transfer the leukemia onto NOD/scid mice and that lymphatic LSC may not loose their self-renewal potential with differentiation.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3510-3518 ◽  
Author(s):  
Shannon L. Maude ◽  
Sarah K. Tasian ◽  
Tiffaney Vincent ◽  
Junior W. Hall ◽  
Cecilia Sheen ◽  
...  

Abstract CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL.


2021 ◽  
Author(s):  
Xiao-Guang Chen ◽  
Bing-Hua Dou ◽  
Jin-Dou An ◽  
Song Feng ◽  
Na Liu ◽  
...  

Background: Long non-coding RNA MAGI2 antisense RNA 3 (MAGI2-AS3) has been identified as a tumor suppressor in various cancers. Acute lymphoblastic leukemia (ALL) is a prevalent kind of leukemia among children. In this study, we aimed at evaluate the role of MAGI2-AS3 in ALL and its underlying mechanisms. Methods: qPCR was adopted to determine MAGI2-AS3, miR-452-5p, and FOXN3 expression. The malignant properties of ALL cells were assessed by CCK8 assay and flow cytometry analysis. The glucose uptake, lactate production, and ATP level were measured to evaluate glycolysis. Western blotting was performed to detect PCNA, Bcl-2, Bax, and HK2 protein levels. The interaction between MAGI2-AS3/FOXN3 and miR-452-5p was validated by luciferase reporter assay. The in vivo growth of ALL cells was determined in xenograft model. Results: MAGI2-AS3 was strikingly down-regulated in ALL samples and cells. Overexpression of MAGI2-AS3 restrained growth, glycolysis and triggered apoptosis of ALL cells. Mechanistically, MAGI2-AS3 could sponge miR-452-5p to up-regulate FOXN3. Silencing of FOXN3 abolished the anti-tumor effect of MAGI2-AS3. Finally, MAGI2-AS3 suppressed the in vivo growth of ALL cells via modulating miR-452-5p/FOXN3 axis. Conclusion: Our findings demonstrate that MAGI2-AS3 delays the progression of ALL by regulating miR-452-5p/FOXN3 signaling pathway.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1596-1596
Author(s):  
Yong-Mi Kim ◽  
Eugene Park ◽  
Colin Lorentzen ◽  
Brian De La Torre ◽  
Yao-Te Hsieh ◽  
...  

Abstract Despite advances in chemotherapeutic treatment of acute lymphoblastic leukemia (ALL), 20% of children relapse with high death rates, so that new treatment modalities are needed. Recent studies have demonstrated that survivin, a member of the inhibitor of apoptosis (IAP) family proteins, is upregulated in ALL of relapsed patients but not in drug-sensitive ALL. The expression of survivin depends on the formation of a complex between β-catenin and its co-activator CBP. Selective suppression of CBP/β-catenin signaling using the novel small-molecule inhibitor ICG-001 offers the opportunity to sensitize leukemia cells to conventional treatment. We hypothesize that inhibition of CBP/β-catenin signaling by combining ICG-001 with conventional therapy represents a promising therapeutic principle to eradicate drug resistant ALL. To test this hypothesis, we used a NOD/SCID xenograft model engrafted with drug-resistant human pre-B ALL leukemia cells (1x106 cells/mouse) to first model the outcome of the patient in vivo. When human CD45 engraftment of 1% was detected by flow cytometry on day 26 post-leukemia-injection, VDL (Vincristine, Dexamethasone, L-Asparaginase) (n=7) or with saline as control (n=7) was administered for 4 weeks intraperitoneally (i.p.). Without treatment, all mice died between days 31–38 post-treatment with a median survival time (MST) of 36 days. In contrast, one animal of the VDL group died at day 14 post-treatment, the remaining 6 mice between days 67–77 post-treatment (MST=70 days, p&lt;0.05 compared to control group), demonstrating that our xenograft model can mirror the outcome of the patient. Next, we tested whether ICG-001 in combination with standard chemotherapy can improve survival of mice engrafted with the resistant human pre-B ALL cells (1.5x106 cells/mouse). Leukemic animals were treated i.p. with a combination of VDL and ICG-001 (25mg/kg/d) (n=3) or with VDL only as a control (n=2). The animals in the control group died on day 18 and 62 post-treatment (MST=40). In marked contrast, the animals treated with a combination of VDL+ICG-001 died on day 71, 72, 77 post-treatment (MST =72 days, p&lt;0.05 compared to VDL group). Blood count analysis did not show side effects of ICG-001 on hematopoietic cells. We next determined the effect of ICG-001 on the expression of survivin by real-time (RT) PCR in recipients of human relapse T-ALL. Survivin mRNA expression was found to be downregulated after VPL+ICG treatment compared to treatment with VPL only. A greater number of animals and a higher dose of ICG-001 with optimized delivery via osmotic pump are being evaluated. Although limited by the small numbers of mice studied, the sustained survival of the mice treated with combination of standard chemotherapy and ICG-001 is compatible with the hypothesis that ICG-001 can sensitize drug resistant leukemia cells to treatment with standard chemotherapy and may lead to novel therapeutic options to overcome drug resistance.


Leukemia ◽  
2022 ◽  
Author(s):  
Felix Seyfried ◽  
Felix Uli Stirnweiß ◽  
Alexandra Niedermayer ◽  
Stefanie Enzenmüller ◽  
Rebecca Louise Hörl ◽  
...  

AbstractTargeting BCL-2, a key regulator of survival in B-cell malignancies including precursor B-cell acute lymphoblastic leukemia, has become a promising treatment strategy. However, given the redundancy of anti-apoptotic BCL-2 family proteins (BCL-2, BCL-XL, MCL-1), single targeting may not be sufficient. When analyzing the effects of BH3-mimetics selectively targeting BCL-XL and MCL-1 alone or in combination with the BCL-2 inhibitor venetoclax, heterogeneous sensitivity to either of these inhibitors was found in ALL cell lines and in patient-derived xenografts. Interestingly, some venetoclax-resistant leukemias were sensitive to the MCL-1-selective antagonist S63845 and/or BCL-XL-selective A-1331852 suggesting functional mutual substitution. Consequently, co-inhibition of BCL-2 and MCL-1 or BCL-XL resulted in synergistic apoptosis induction. Functional analysis by BH3-profiling and analysis of protein complexes revealed that venetoclax-treated ALL cells are dependent on MCL-1 and BCL-XL, indicating that MCL-1 or BCL-XL provide an Achilles heel in BCL-2-inhibited cells. The effect of combining BCL-2 and MCL-1 inhibition by venetoclax and S63845 was evaluated in vivo and strongly enhanced anti-leukemia activity was found in a pre-clinical patient-derived xenograft model. Our study offers in-depth molecular analysis of mutual substitution of BCL-2 family proteins in acute lymphoblastic leukemia and provides targets for combination treatment in vivo and in ongoing clinical studies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1416-1416
Author(s):  
Felix Seyfried ◽  
Felix Stirnweiß ◽  
Stefan Köhrer ◽  
Klaus-Michael Debatin ◽  
Lüder Hinrich Meyer

Abstract Deregulated cell death and survival pathways contribute to leukemogenesis and treatment failure of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. The intrinsic apoptosis pathway is regulated at the mitochondrial level by different pro- and anti-apoptotic molecules. Members of the BCL-2 family are key regulators of mitochondrial apoptosis signaling. Pro-apoptotic BH3-only proteins like BIM and BID activate pro-death proteins such as BAX and BAK leading to cell death. Anti-apoptotic BCL-2 family members including BCL-2, BCL-XL and MCL-1 bind to and sequester pro-apoptotic molecules, prevent activation of pro-death proteins and counter-regulate apoptosis induction. Small molecule inhibitors have been developed that block binding to anti-apoptotic molecules like BCL-2, leading to release of pro-apoptotic proteins and cell death induction. In particular, the BCL-2-specific inhibitor venetoclax (VEN) has demonstrated substantial anti-cancer activity and became an approved drug for the treatment of CLL patients. Investigating different, individual BCP-ALL samples, we and others recently identified heterogeneous sensitivities for VEN, suggesting that BCP-ALL cells might also depend on other pro-survival BCL-2 family proteins including MCL-1, leading to VEN insensitivity and resistance. A novel BH3-mimetic, S63845, that selectively targets MCL-1 has been reported. Here, we assessed the activity of S63845 and addressed a potential synergism of simultaneous blockage of BCL-2 and MCL-1 by VEN and S63845 (S) in BCP-ALL. The activity of the MCL-1 inhibitor was analyzed in a panel of BCP-ALL cell lines (N=6) and a series of primary, patient-derived BCP-ALL primograft samples (N=27) determining half-maximal effective concentrations (EC50) upon exposure to increasing concentrations of S and analysis of cell death induction. We observed heterogeneous sensitivities to S with EC50 values ranging from 16 nM to almost 10 µM. Protein expression of MCL-1 and other BCL-2 family members BCL-2, BCL-XL and BCL-W was assessed by western blot analysis and quantified, however neither association of MCL-1 levels nor expression of the other regulators and S sensitivity was found in cell lines and primograft leukemias. Moreover, we also compared sensitivities for both inhibitors but found independent activities of S and VEN in individual ALL samples. Next, we addressed the role of MCL-1 for VEN sensitivity and generated two MCL-1 knock out BCP-ALL cell lines by CRISPR/Cas9 gene editing. In both lines, clearly increased VEN sensitivities were observed upon depletion of MCL-1, indicating that MCL-1 is contributing to activity of the BCL-2 inhibitor VEN. Based on these findings, we investigated the effects of pharmacological MCL-1 inhibition for VEN sensitivity and incubated all 6 cell lines with VEN and S at increasing concentrations and observed clear synergistic effects upon combined BCL-2 and MCL-1 inhibition indicated by combination indices (CI) below 0.1. Moreover, we investigated 7 primograft BCP-ALL samples and found that MCL-1 inhibition by S clearly synergized with VEN activity (CI < 0.3). To investigate the anti-leukemia activity of co-targeting BCL-2 and MCL-1 in vivo in a pre-clinical setting, a high-risk leukemia derived from an infant, MLL/ENL rearranged pro-B ALL case was transplanted onto NOD/SCID mice. Upon ALL manifestation (presence of >5% human blasts in blood), recipients were treated with either VEN, S, the combination of both, or vehicle for 10 days. After treatment, leukemia loads were analyzed showing significantly reduced loads in the co-treated group as compared to vehicle, VEN or S alone in spleen, bone marrow, and central nervous system (p-values < 0.05), indicating synergistic activity of co-inhibition of BCL-2 and MCL-1 in vivo. Taken together, our data show heterogeneous sensitivity of individual BCP-ALL samples to MCL-1 inhibition by S, which is not associated with MCL-1 protein expression levels or VEN sensitivity. Both, genetic depletion and inhibition of MCL-1 by S synergizes with VEN leading to increased anti-leukemia activity in vitro and ex vivo. Importantly, co-targeting BCL-2 and MCL-1 significantly reduced leukemia infiltration in spleen, BM and CNS in a pre-clinical model of high-risk BCP-ALL, warranting further evaluation and possible clinical application of targeting MCL-1 alone and in combination with BCL-2 inhibition. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Xiao-Guang Chen ◽  
Bing-Hua Dou ◽  
Jin-Dou An ◽  
Song Feng ◽  
Na Liu ◽  
...  

Abstract Background: Long non-coding RNA MAGI2 antisense RNA 3 (MAGI2-AS3) has been identified as a tumor suppressor in various cancers. Acute lymphoblastic leukemia (ALL) is a prevalent kind of leukemia among children. In this study, we aimed at evaluate the role of MAGI2-AS3 in ALL and its underlying mechanisms.Methods: qPCR was adopted to determine MAGI2-AS3, miR-452-5p, and FOXN3 expression. The malignant properties of ALL cells were assessed by CCK8 assay and flow cytometry analysis. The glucose uptake, lactate production, and ATP level were measured to evaluate glycolysis. Western blotting was performed to detect PCNA, Bcl-2, Bax, and HK2 protein levels. The interaction between MAGI2-AS3/FOXN3 and miR-452-5p was validated by luciferase reporter assay. The in vivo growth of ALL cells was determined in xenograft model.Results: MAGI2-AS3 was strikingly down-regulated in ALL samples and cells. Overexpression of MAGI2-AS3 restrained growth, glycolysis and triggered apoptosis of ALL cells. Mechanistically, MAGI2-AS3 could sponge miR-452-5p to up-regulate FOXN3. Silencing of FOXN3 abolished the anti-tumor effect of MAGI2-AS3. Finally, MAGI2-AS3 suppressed the in vivo growth of ALL cells via modulating miR-452-5p/FOXN3 axis. Conclusions: Our findings demonstrate that MAGI2-AS3 delays the progression of ALL by regulating miR-452-5p/FOXN3 signaling pathway.


2017 ◽  
Vol 214 (3) ◽  
pp. 773-791 ◽  
Author(s):  
Matthew T. Witkowski ◽  
Yifang Hu ◽  
Kathryn G. Roberts ◽  
Judith M. Boer ◽  
Mark D. McKenzie ◽  
...  

Genetic alterations disrupting the transcription factor IKZF1 (encoding IKAROS) are associated with poor outcome in B lineage acute lymphoblastic leukemia (B-ALL) and occur in &gt;70% of the high-risk BCR-ABL1+ (Ph+) and Ph-like disease subtypes. To examine IKAROS function in this context, we have developed novel mouse models allowing reversible RNAi-based control of Ikaros expression in established B-ALL in vivo. Notably, leukemias driven by combined BCR-ABL1 expression and Ikaros suppression rapidly regress when endogenous Ikaros is restored, causing sustained disease remission or ablation. Comparison of transcriptional profiles accompanying dynamic Ikaros perturbation in murine B-ALL in vivo with two independent human B-ALL cohorts identified nine evolutionarily conserved IKAROS-repressed genes. Notably, high expression of six of these genes is associated with inferior event–free survival in both patient cohorts. Among them are EMP1, which was recently implicated in B-ALL proliferation and prednisolone resistance, and the novel target CTNND1, encoding P120-catenin. We demonstrate that elevated Ctnnd1 expression contributes to maintenance of murine B-ALL cells with compromised Ikaros function. These results suggest that IKZF1 alterations in B-ALL leads to induction of multiple genes associated with proliferation and treatment resistance, identifying potential new therapeutic targets for high-risk disease.


Sign in / Sign up

Export Citation Format

Share Document