Integrative Analysis Of mRNA/miRNA Expression Profiles Identified JARID2 As a Shared Target Of Deregulated Mirnas In Primary Myelofibrosis

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1600-1600
Author(s):  
Roberta Zini ◽  
Ruggiero Norfo ◽  
Valentina Pennucci ◽  
Elisa Bianchi ◽  
Simona Salati ◽  
...  

Abstract Ph-negative myeloproliferative neoplasms (MPNs) are characterized by many somatic mutations which have already been shown useful in the prognostic assessment of MPN patients [A.M. Vannucchi et al., Leukemia, 2013]. Moreover, aberrant microRNA (miRNA) expression seems to add to the molecular complexity of MPNs, as specific miRNA signatures capable of discriminating MPN cells from those of normal donors were previously reported [P. Guglielmelli et al., Exp Hematol, 2007]. In order to have a comprehensive picture of miRNA deregulation and its relationship with differential gene expression in primary myelofibrosis (PMF) cells, we obtained gene- (GEP) and miRNA expression profiles (miEP) of CD34+ cells from 31 healthy donors and 42 PMF patients using Affymetrix technology (HG-U219 and miRNA 2.0 arrays). Among 726 differentially expressed genes (DEG) we found that several putative cancer markers (WT1, ANGPT1) and several genes related to PMF progression, i.e. involved in megakaryocyte (MK) differentiation (NFE2, CD9), and fibrosis development (DLK1, LEPR1), were significantly more expressed in PMF samples than in the normal counterpart. Similarly, as regards the miEP, among 74 human differentially expressed miRNAs (DEM) in PMF compared to controls we found the upregulation of several miRNAs associated with hematological malignancies or known as oncomiRs (i.e. hsa-miR-155-5p [S. Jiang et al., Cancer Res, 2010], miRNAs belonging to the miR-17-92 cluster [L. Venturini et al., Blood, 2007]), and other aberrantly expressed miRNAs never described in hematopoiesis (i.e. hsa-miR-335-5p). Then, in order to construct regulatory networks of the functional human miRNA-target interactions, we performed an integrative analysis (IA) with Ingenuity Pathway analysis software, which combines the miRNA expression profile with computational predicted targets and with the gene expression data. IA between DEG and DEM disclosed a high number of predicted targets with anti-correlated expression to the trend of their targeting miRNAs. Of note, IA identified an interaction network (see Figure) in which the upregulated oncomirs miR-155-5p [R.M. O'Connel et al., J Exp Med, 2008], miR29a-3p [Y.C. Han et al., J Exp Med, 2010] and miR-19b-3p [K.J. Mavrakis et al., Nat Cell Biol, 2010] could explain the downregulation of targets whose lower expression was already described as involved in myeloproliferative phenotypes, such as NR4A3, CDC42, HMGB3. Additionally, IA disclosed the chromatin remodeler JARID2, which is frequently deleted in leukemic transformation of chronic myeloid malignancies, as a shared target of several upregulated miRNAs in PMF samples (i.e. miR-155-5p, miR-152-3p). Noteworthy, these miRNA-mRNA interactions were functionally confirmed by 3' UTR luciferase reporter assays. Next, in order to characterize the role of JARID2 in PMF pathogenesis, we performed RNAi-mediated gene silencing experiments on CD34+ cells of healthy donor. Interestingly, inhibition of JARID2 expression produces in silenced cells a significant increase of CD41 expression when compared with control (28.6±3.1% vs 15.3±1.8% at day 8, 52.6±7.6% vs 35.4±4.9% at day 12 of serum free liquid culture) and a remarkable increase in CFU-MK colonies (59.6±6.5% vs 39.8±5.9%). The values are reported as mean ± 2S.E.M from five independent experiments. Moreover, morphological analysis after May-Grunwald-Giemsa staining showed that JARID2 silencing induces in normal CD34+ cells a considerable enrichment in MK precursors at different stages of maturation. This study allowed the identification of different networks possibly involved in PMF onset, highlighting the potential contribution of miRNAs to PMF pathogenesis. Furthermore, for the first time, we demonstrated that the JARID2 downregulation in CD34+ cells might contribute to the abnormal megakaryopoiesis typical of PMF. Disclosures: Rambaldi: Novartis: Honoraria; Sanofi: Honoraria; Italfarmaco: Honoraria.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2854-2854
Author(s):  
Ruggiero Norfo ◽  
Roberta Zini ◽  
Valentina Pennucci ◽  
Elisa Bianchi ◽  
Simona Salati ◽  
...  

Abstract Abstract 2854 Molecular mechanisms underlying Philadephia-negative myeloproliferative neoplasm (MPN) pathogenesis were partially unraveled in 2005–2006 with the identification of somatic gain-of-function of JAK2 and MPL, after which many other mutated genes were found. Recently, several new molecular pathogenetic mechanisms were identified. Among them, aberrant microRNA (miRNA) expression especially seems to add to the molecular complexity of MPNs, as specific miRNA signatures capable of discriminating MPN cells from those of normal donors were previously reported (P. Guglielmelli et al., Exp Hematol, 2007). In order to have a comprehensive picture of miRNA deregulation and its relationship with differential gene expression in primary myelofibrosis (PMF) cells, we obtained coding gene- (GEP) and miRNA expression profiles (miEP) in the same CD34+ sample from 31 healthy donors and 42 PMF patients by means of Affymetrix technology (HG-U219 and miRNA 2.0 arrays). 726 genes were found as differentially expressed (DEG) (fold change contrast ≥2, false discovery rate ≤0.05) (FIG. 1) and further analysis pointed out that several DEG are related to processes involved in PMF progression as megakaryocyte (MK) differentiation, fibrosis and migration. Of interest, we found the upregulation of some putative cancer markers, such as WT1 (K. Inoue et al., Blood, 1994) and ANGPT1 (C.L. Cheng, Br J Cancer, 2011) whose expression has already been associated with poor prognosis in hematological neoplasms and in other malignancies. Figure 1 Figure 1. Among the deregulated transcription factors, we detected several genes involved in CD34+ commitment, and potentially in their transformation, such as NFE-2 (C. LAbbaye et al., J Clin Invest, 1995) and KLF3 (A.P. Funnell, Mol Cell Biol, 2012). As regards miEP, we achieved a list of 74 human miRNAs modulated in PMF (DEM) (fold change contrast ≥1.5, false discovery rate ≤0.05), some of which associated with hematological malignancies or known as oncomirs are upregulated, i.e. hsa-miR-155-5p (S. Jiang, Cancer Res, 2010), miRNAs belonging to the miR-17–92 cluster (L. Venturini et al., Blood, 2007), whereas other aberrantly expressed miRNAs have never been described in any hematological context. Next, we performed an in silico integrative analysis (IA) with Ingenuity Pathway analysis software, which combines the computational predicted targets with the gene expression data, in order to construct regulatory networks of the functional human miRNA-target interactions. IA between DEG and DEM disclosed a high number of predicted targets with anti-correlated expression to the trend of their targeting miRNAs. This approach allowed the identification of different networks potentially involved in PMF onset and progression, such as MK differentiation and chromatin remodeling, highlighting the potential contribution of miRNAs to PMF pathogenesis. In particular, the integrative analysis has identified an interaction network involving the oncomirs miR-155-5p and miR-29a-3p (R. M. O'Connel et al, J Exp Med, 2008, Y.C. Han et al, j Exp Med, 2010) and their targets (FIG. 2). Figure 2 Figure 2. In this network the upregulation of miR-155-5p and mir-29a-3p could explain the negative regulation of two tumor suppressor genes, HBP1 and TP53INP1, and of SPTB1, CDC42 and KLF3, whose downregulation is involved in malignant hematopoiesis (L.Yang et al, Blood 2007). This network also shows the upregulation of some miRNAs whose function is unknown in the hematopoietic context as miR-335-5p, with the negative regulation of its predicted targets, NR4A3 and PRDM2, which are described as implicated in myeloproliferation (AM Ramirez-Herrick et al, Blood 2001). The present findings lay the groundwork for functional in vitro validation of selected networks in normal and PMF CD34+ cells by means of DEG/DEM overexpression and silencing experiments; furthermore, expression data will be helpful in order to find a clinical correlation between mRNA/miRNA expression levels and diagnostic/prognostic relevance. In conclusion, GEP and miEP pointed out genes and miRNAs candidate for elucidating some of the pathogenetic features of PMF CD34+ cells, whereas IA uncovered potential regulatory networks in which aberrantly expressed miRNAs and genes interact contributing to the malignant phenotype. Disclosures: Vannucchi: Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (13) ◽  
pp. e21-e32 ◽  
Author(s):  
Ruggiero Norfo ◽  
Roberta Zini ◽  
Valentina Pennucci ◽  
Elisa Bianchi ◽  
Simona Salati ◽  
...  

Key Points Differential gene and miRNA expression analysis in PMF granulocytes identifies new biomarkers and putative therapeutic targets. Activation of the miR-155/JARID2 axis in PMF CD34+ cells results in overproduction of MK precursors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2699-2699
Author(s):  
Mehdi Nassiri ◽  
Joseph Olczyk ◽  
Samantha Knapp ◽  
Gail Vance ◽  
Anupama Tewari ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) is a hematopoietic malignancy with hybrid myeloproliferative and myelodysplastic features. The diagnostic criteria for CMML are evolving with the progress of our knowledge on various genetic lesions involved in the pathogenesis of myeloid neoplasms. This shift, including molecular genetic lesions in the diagnosis process, is highlighted in updated 2008 WHO classification system, which excludes myeloproliferative neoplasms with PDGFRB rearrangement, monocytosis and eosinophilia from CMML category. Despite these recent advancements, CMML remains a heterogeneous group of diseases with variable patient outcomes and no well-defined targeted therapy. To further investigate the biological diversity of this disorder, we studied microRNA (miRNA) expression profiles, their relation to the diagnostic and clinical parameters in CMML, and compared these profiles to global miRNA expression in normal reference bone marrow samples. MicroRNAs are a class of non-coding RNA molecules that alter gene expression by targeting and blocking mRNA. The role of miRNAs in carcinogenesis is related to their targeting of messenger RNAs encoding for oncogenes and tumor suppressor genes. Bone marrow samples from 22 patients with CMML were included in the study. Median age of the patients was 71 years with a range from 39 to 92 years. There were 15 males and 7 females. Seventeen patients presented with CMML-1 (blasts less than 5% in peripheral blood and less than 10% of bone marrow differential count). The remaining patients showed CMML-2. Nine patients had WBC below 13×109/L defining a myelodysplastic type of CMML. Cytogenetic results were available in 20 patients. Fourteen patients demonstrated a normal karyotype. Normal pooled bone marrow samples were used as a reference. The total RNA was isolated using RecoverAll RNA extraction kit. Micoroarray studies were performed using Agilent human miRNA microarrays (version 1.0) containing probes for 470 human and 64 human viral miRNAs cataloged in the Sanger database v9.1. The results were analyzed using BRB array tool and Genesis software. Unsupervised hierarchical clustering discovered two different groups of CMML samples with patterns of miRNA expression distinct from normal bone marrows (oneway ANOVA). Twenty seven miRNAs were differentially expressed in normal bone marrow reference samples vs. CMML-1 and -2. There was an overlap in miRNA profiles between groups of CMML based on blast percentage (CMML-1 vs. CMML-2), WBC count (<13×109/L vs. ≥13×109/L) and presence or absence of cytogenetic abnormalities. However, using PAM algorithm the following miRNAs showed predictive power: hsa-miR-519b (in CMML-1 vs. 2); hsa-miR-15b and hsa-miR-432* (in groups of samples separated by a cut-off WBC of 13×109/L) and hsa-miR-223 (comparing CMML with and without cytogenetic abnormalities). In summary, significantly different miRNA profiles were seen in CMML as compared to normal reference bone marrow. Two distinct subgroups of CMML were defined by the miRNA expression profiles. Select miRNAs were differentially expressed in known biological and clinical subgroups of CMML. Further correlation of clinical and outcome data with subgroups of CMML defined by miRNA expression profiles will be presented.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3020-3020
Author(s):  
Alicia Báez ◽  
Beatriz Martin-Antonio ◽  
Concepción Prats-Martín ◽  
Isabel Álvarez-Laderas ◽  
María Victoria Barbado ◽  
...  

Abstract Abstract 3020 Introduction: Hematopoietic progenitors cells (HPCs) used in allogenic transplantation (allo-HSCT) may have different biological properties depending on their source of origin: mobilized peripheral blood (PB), bone marrow (BM) or umbilical cord (UC), which may be reflected in miRNAs or gene expression. The identification of different patterns of expression could have clinical implications. The aim of this study was to determine differences in miRNAs and gene expression patterns in the different sources of HPCs used in allo-HSCT. Materials and Method: CD34 + cells were isolated by immunomagnetic separation and sorting from 5 healthy donors per type of source: UC, BM and PB mobilized with G-CSF. A pool of samples from PB not mobilized was used as reference group. We analyzed the expression of 375 miRNAs using TaqMan MicroRNA Arrays Human v2.0 (Applied Biosystems), and gene expression using Whole Human Genome Oligo microarray kit 4×44K (Agilent). The expression levels of genes and miRNAs were obtained by the 2-ΔΔCTmethod. From expression data hierarchical clustering was performed using the Euclidean distance. To identify genes and miRNAs differentially expressed between the different sources of HPCs statistical Kruskal Wallis test was applied. All analysis were performed using the Multiexperiment Viewer 4.7.1. The function of the miRNAs and genes of interest was determined from the various databases available online (TAM database, Gene Ontology and TargetScan Human). Results: Forty-two miRNAs differentially expressed between the different sources were identified. As compared to BM or UC, in mobilized PB most miRNAs were overexpressed, including the miRNA family of miR515, which is characteristic of embryonic stem cells. On the other hand, 47 genes differentially expressed between the different sources were identified. Interestingly, a similar pattern of expression was observed between movilized PB and UC as compared to BM. Interestingly, 13 of these genes are targets of the miRNAs also identified in this study, which suggests that their expression might be regulated by these miRNAs. Conclusion: There are significant differences in miRNAs and gene expression levels between the different sources of HPCs Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5548-5548
Author(s):  
Rosalia Di Stefano ◽  
Elena Baiamonte ◽  
Melania Lo Iacono ◽  
Barbara Spina ◽  
Flavia Contino ◽  
...  

Abstract Introduction: Genetic modification of autologous hematopoietic stem and progenitor cells (HSPC) is a promising clinical intervention to cure inherited monogenic diseases. Successful gene therapy trials have already been conducted using CD34+ cells from bone marrow and from mobilized peripheral blood. In this regard, cord blood (CB) represents an attractive source of HSCs due to its high concentration of high proliferative HSPC and increased susceptibility to be transduced by lentiviral vectors. Unfortunately, the major disadvantage is the limited number of HSC in the CB collection. Consequently, ex-vivo expansion of CB-HSC is desirable to extend clinical applications. Purposes: To investigate the ability of UCB-cd34+ cells to be expanded in serum-free media supplemented with the early acting hematopoietic cytokines SCF,TPO and Flt-3 ligant (STF) and to characterize CD34+ cells subtypes, clonogenic capacity and gene expression profile during expansion. We also wanted to investigate the susceptibility of the expanded cd34+ cells to be transduced by a GFP-lentiviral vector (LV-GFP) Material and Methods: CD34+ immunoselected cells from 10 UCB were grown for 8 days in customized serum-free medium formulated for HSC expansion, supplemented with STF cytokines. Numbers end frequency of CD34+cells and co-expression of the primitive surface antigens (CD38, CD133, CD90) was evaluated during expansion. Colonies developed in methylcellulose were scored for enumeration ad typing. LV-GFP transduction efficiency was evaluated in CD34+ cells cultured for 4 days in expansion medium plus STF and for 24 hrs in X-vivo10 medium with STF±IL-3 cytokines; the last condition slightly expands CD34+ cells (1.3 fold) and are currently used for HSPC-lentivector transduction in gene therapy clinical trials. The transduction efficiency was evaluated by measuring the percentage of GFP+ cells in the bulk and in colonies developed in methylcellulose and the VCN/cell by Q-PCR. Gene expression profiles were analyzed by human whole genome Agilent microarray Technology to detect differentially expressed genes between expanded, ex-vivo medium cultured and un-cultured cells. Results: We found an average of 8 fold-increase CD34+cells at day 4 and of 22 fold- increase at day 8 of culture. The frequency of CD34+ was maintained at day 4 and declined of about 50% at day 8. CD34+/CD38- early progenitors doublet as early as day 4, differences in CD34+/CD133+ and CD34+/CD90+cells were not significant. The number of CFU slightly increased during expansion while the relative frequency of colonies type did not significantly changed. Four days expanded CD34+ cells were transduced more efficiently than those grown in ex-vivo medium even in presence of IL-3 added to the STF cytokine cocktail. Comprehensive gene expression profile analysis highlighted about 4000 genes differentially expressed in CD34+ cells expanded for 4 and for 8 days compared to that of the un-cultured cells. Conversely, the expression profiles analysis did not show any clear separation between different cell culture methods (expansion vs ex-vivo medium). Specifically, the number of differentially expressed genes in common between the different culture conditions compared with the un-cultured cells was statistically significant. Unsurprisingly, the common up-regulated genes were related to the cell cycle. The likeness between the gene expression profiles of the different culture conditions was also validated by the identification of a significantly small number of differentially expressed genes between them. Conclusions: UCB-CD34+ cells can be efficiently expanded and transduced in serum free conditions. The expanded cells exhibited phenotypic marchers typical of early progenitors and developed colonies in number and in type similar to the unmanipulated cells and exhibited whole gene expression profile that is consisted with that of CD34+ cells exposed for the short term culture conditions currently used in gene therapy trial mediated by lentiviral vectors. Results from this study open a window on the future possibility of using homologous UCB-HSC as target for gene correction in patients diagnosed for a genetic disorder in prenatal time. The genetically modified cells would be stored and used for gene therapy in the same individual in pediatric age. This work was funded by the F and P Cutino Foundation - Project RiMedRi CUP G73F12000150004 Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 170 (4) ◽  
pp. 583-591 ◽  
Author(s):  
David Velázquez-Fernández ◽  
Stefano Caramuta ◽  
Deniz M Özata ◽  
Ming Lu ◽  
Anders Höög ◽  
...  

BackgroundThe adrenocortical adenoma (ACA) entity includes aldosterone-producing adenoma (APA), cortisol-producing adenoma (CPA), and non-hyperfunctioning adenoma (NHFA) phenotypes. While gene mutations and mRNA expression profiles have been partly characterized, less is known about the alterations involving microRNA (miRNA) expression.AimTo characterize miRNA expression profile in relation to the subtypes of ACAs.Subjects and methodsmiRNA expression profiles were determined in 26 ACAs (nine APAs, ten CPAs, and seven NHFAs) and four adrenal references using microarray-based screening. Significance analysis of microarrays (SAM) was carried out to identify differentially expressed miRNAs between ACA and adrenal cortices or between tumor subtypes. Selected differentially expressed miRNAs were validated in an extended series of 43 ACAs and ten adrenal references by quantitative RT-PCR.ResultsAn hierarchical clustering revealed separate clusters for APAs and CPAs, while the NHFAs were found spread out within the APA/CPA clusters. When NHFA was excluded, the clustering analysis showed a better separation between APA and CPA. SAM analysis identified 40 over-expressed and three under-expressed miRNAs in the adenomas as compared with adrenal references. Fourteen miRNAs were common among the three ACA subtypes. Furthermore, we found specific miRNAs associated with different tumor phenotypes.ConclusionThe results suggest that miRNA expression profiles can distinguish different subtypes of ACA, which may contribute to a deeper understanding of ACA development and potential therapeutics.


2021 ◽  
Vol 23 (1) ◽  
pp. 105
Author(s):  
Matic Bošnjak ◽  
Željka Večerić-Haler ◽  
Emanuela Boštjančič ◽  
Nika Kojc

Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises autoimmune disease entities that cause target organ damage due to relapsing-remitting small vessel necrotizing vasculitis, and which affects various vascular beds. The pathogenesis of AAV is incompletely understood, which translates to considerable disease- and treatment-related morbidity and mortality. Recent advances have implicated microRNAs (miRNAs) in AAV; however, their accurate characterization in renal tissue is lacking. The goal of this study was to identify the intrarenal miRNA expression profile in AAV relative to healthy, non-inflammatory and inflammatory controls to identify candidate-specific miRNAs. Formalin-fixed, paraffin-embedded renal biopsy tissue samples from 85 patients were obtained. Comprehensive miRNA expression profiles were performed using panels with 752 miRNAs and revealed 17 miRNA that differentiated AAV from both controls. Identified miRNAs were annotated to characterize their involvement in pathways and to define their targets. A considerable subset of differentially expressed miRNAs was related to macrophage and lymphocyte polarization and cytokines previously deemed important in AAV pathogenesis, lending credence to the obtained results. Interestingly, several members of the miR-30 family were detected. However, a validation study of these differentially expressed miRNAs in an independent, larger sample cohort is needed to establish their potential diagnostic utility.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2863-2863
Author(s):  
Ralf Kronenwett ◽  
Elena Diaz-Blanco ◽  
Thorsten Graef ◽  
Ulrich Steidl ◽  
Slawomir Kliszewski ◽  
...  

Abstract In this study, we examined gene expression profiles of immunomagnetically enriched CD34+ cells from bone marrow (BM) of 9 patients with untreated CML in chronic phase and from 8 healthy volunteers using Affymetrix GeneChips. Additionally, in 3 patients CD34+ from peripheral blood (PB) were compared with those from BM. Differential expression of 12 candidate genes was corroborated by quantitative real-time RT-PCR. Following hybridization of labelled cRNA to Affymetrix GeneChips covering 8793 genes we used the statistical scripting language “R” for data analysis. For normalization a method of variance stabilization transformations was used. To identify significantly differentially expressed genes we used the Significance Analysis of Microarrays (SAM) algorithm. The intraindividual comparison of CD34+ cells from BM and PB in CML showed no differentially expressed genes which is different to normal CD34+ cells which had distinct gene expression patterns comparing circulating and sedentary CD34+ cells (Steidl et al., Blood, 2002). Comparing malignant BM CD34+ cells from CML with normal BM CD34+ cells 792 genes were significantly differentially expressed (fold change: >1.3; q-value: <0.03). 735 genes had a higher and 57 genes a lower expression in CML. Gene expression patterns reflected BCR-ABL-induced functional alterations such as increased cell-cycle and proteasome activity as well as decreased apoptosis. Downregulation of several genes involved in DNA repair and detoxification in CML might be the basis for DNA instability and progression to blast crisis. An interesting finding was an upregulation of fetal hemoglobin (Hb) components such as Hb gamma A and G in leukemic progenitor cells whereas no difference in adult Hb expression was observed suggesting an induction of fetal Hb synthesis in CML. Looking at genes involved in stem cell maintenance we found an upregulation of GATA2 and a reduced expression of proteins from the Wnt signalling pathway suggesting an increased self-renewal of CML hematopoietic stem cells compared to the normal counterpart. Moreover, several genes playing a role in ubiquitin-dependent protein catabolism and in fatty acid biosynthesis such as fatty acid synthase (FAS) were stronger expressed in CML. The functional role of FAS for leukemic cell growth was assessed in cell culture experiments. Incubation of the leukemic cell line K562 with the FAS inhibitor cerulenin (10 μg/ml) for 3 days resulted in death of 99% of cells suggesting that survival of leukemic cells depends upon endogenous fatty acid synthesis. In an attempt to find a specific gene expression pattern associated with response to imatinib therapy we divided the patients included in this study into two groups: maximal reduction of BCR-ABL transcript level <3-log vs. >3-log (major molecular remission) during therapy. Comparing pretherapeutic gene expression profiles of both groups we could not identify a pattern predictive for major molecular response. In conclusion, malignant CD34+ cells in CML have a specific gene expression pattern which seems not to be predictive for response to imatinib therapy.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ni Li ◽  
Jiangfang Lian ◽  
Sheng Zhao ◽  
Dawei Zheng ◽  
Xi Yang ◽  
...  

This study compared microRNA (miRNA) expression profiles between rheumatic heart disease (RHD) patients and healthy controls to investigate their differential expression and help elucidate their mechanisms of action. Microarray analysis was used to measure miRNA expression, and a total of 133 miRNAs were shown to be significantly upregulated in RHD patients compared with controls, including miR-1183 and miR-1299. A total of 137 miRNAs, including miR-4423-3p and miR-218-1-3p, were significantly downregulated in RHD patients. Quantitative real-time-PCR confirmed microarray findings for miR-1183 and miR-1299 in both tissue and plasma. Bioinformatic predictions were also made of differentially expressed miRNAs as biomarkers in RHD by databases and GO/pathway analysis. Furthermore, we investigated miR-1183 and miR-1299 expression in RHD patients with secondary pulmonary hypertension (PAH). Our findings identified an important role for miR-1299 as a direct regulator of RHD, while the observed difference in expression of miR-1183 between RHD-PAH patients with high or low pulmonary artery pressure suggests that miR-1183 overexpression may reflect pulmonary artery remodeling. miR-1183 and miR-1299 appear to play distinct roles in RHD pathogenesis accompanied by secondary PAH and could be used as potential biological markers for disease development.


Sign in / Sign up

Export Citation Format

Share Document