scholarly journals Renal Tissue miRNA Expression Profiles in ANCA-Associated Vasculitis—A Comparative Analysis

2021 ◽  
Vol 23 (1) ◽  
pp. 105
Author(s):  
Matic Bošnjak ◽  
Željka Večerić-Haler ◽  
Emanuela Boštjančič ◽  
Nika Kojc

Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises autoimmune disease entities that cause target organ damage due to relapsing-remitting small vessel necrotizing vasculitis, and which affects various vascular beds. The pathogenesis of AAV is incompletely understood, which translates to considerable disease- and treatment-related morbidity and mortality. Recent advances have implicated microRNAs (miRNAs) in AAV; however, their accurate characterization in renal tissue is lacking. The goal of this study was to identify the intrarenal miRNA expression profile in AAV relative to healthy, non-inflammatory and inflammatory controls to identify candidate-specific miRNAs. Formalin-fixed, paraffin-embedded renal biopsy tissue samples from 85 patients were obtained. Comprehensive miRNA expression profiles were performed using panels with 752 miRNAs and revealed 17 miRNA that differentiated AAV from both controls. Identified miRNAs were annotated to characterize their involvement in pathways and to define their targets. A considerable subset of differentially expressed miRNAs was related to macrophage and lymphocyte polarization and cytokines previously deemed important in AAV pathogenesis, lending credence to the obtained results. Interestingly, several members of the miR-30 family were detected. However, a validation study of these differentially expressed miRNAs in an independent, larger sample cohort is needed to establish their potential diagnostic utility.

2014 ◽  
Vol 170 (4) ◽  
pp. 583-591 ◽  
Author(s):  
David Velázquez-Fernández ◽  
Stefano Caramuta ◽  
Deniz M Özata ◽  
Ming Lu ◽  
Anders Höög ◽  
...  

BackgroundThe adrenocortical adenoma (ACA) entity includes aldosterone-producing adenoma (APA), cortisol-producing adenoma (CPA), and non-hyperfunctioning adenoma (NHFA) phenotypes. While gene mutations and mRNA expression profiles have been partly characterized, less is known about the alterations involving microRNA (miRNA) expression.AimTo characterize miRNA expression profile in relation to the subtypes of ACAs.Subjects and methodsmiRNA expression profiles were determined in 26 ACAs (nine APAs, ten CPAs, and seven NHFAs) and four adrenal references using microarray-based screening. Significance analysis of microarrays (SAM) was carried out to identify differentially expressed miRNAs between ACA and adrenal cortices or between tumor subtypes. Selected differentially expressed miRNAs were validated in an extended series of 43 ACAs and ten adrenal references by quantitative RT-PCR.ResultsAn hierarchical clustering revealed separate clusters for APAs and CPAs, while the NHFAs were found spread out within the APA/CPA clusters. When NHFA was excluded, the clustering analysis showed a better separation between APA and CPA. SAM analysis identified 40 over-expressed and three under-expressed miRNAs in the adenomas as compared with adrenal references. Fourteen miRNAs were common among the three ACA subtypes. Furthermore, we found specific miRNAs associated with different tumor phenotypes.ConclusionThe results suggest that miRNA expression profiles can distinguish different subtypes of ACA, which may contribute to a deeper understanding of ACA development and potential therapeutics.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ni Li ◽  
Jiangfang Lian ◽  
Sheng Zhao ◽  
Dawei Zheng ◽  
Xi Yang ◽  
...  

This study compared microRNA (miRNA) expression profiles between rheumatic heart disease (RHD) patients and healthy controls to investigate their differential expression and help elucidate their mechanisms of action. Microarray analysis was used to measure miRNA expression, and a total of 133 miRNAs were shown to be significantly upregulated in RHD patients compared with controls, including miR-1183 and miR-1299. A total of 137 miRNAs, including miR-4423-3p and miR-218-1-3p, were significantly downregulated in RHD patients. Quantitative real-time-PCR confirmed microarray findings for miR-1183 and miR-1299 in both tissue and plasma. Bioinformatic predictions were also made of differentially expressed miRNAs as biomarkers in RHD by databases and GO/pathway analysis. Furthermore, we investigated miR-1183 and miR-1299 expression in RHD patients with secondary pulmonary hypertension (PAH). Our findings identified an important role for miR-1299 as a direct regulator of RHD, while the observed difference in expression of miR-1183 between RHD-PAH patients with high or low pulmonary artery pressure suggests that miR-1183 overexpression may reflect pulmonary artery remodeling. miR-1183 and miR-1299 appear to play distinct roles in RHD pathogenesis accompanied by secondary PAH and could be used as potential biological markers for disease development.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Maoxing Pan ◽  
Yuanjun Deng ◽  
Chuiyang Zheng ◽  
Huan Nie ◽  
Kairui Tang ◽  
...  

Objective. The purpose of present study was to investigate the potential mechanism underlying the protective effect of Shenling Baizhu San (SLBZS) on nonalcoholic fatty liver disease (NAFLD) by microRNA (miRNA) sequencing. Methods. Thirty male Wistar rats were randomly divided into a normal control (NC) group, a high-fat diet (HFD) group, and an SLBZS group. After 12 weeks, the biochemical parameters and liver histologies of the rats were assessed. The Illumina HiSeq 2500 sequencing platform was used to analyse the hepatic miRNA expression profiles. Representative differentially expressed miRNAs were further validated by qRT-PCR. The functions of the differentially expressed miRNAs were analysed by bioinformatics. Results. Our results identified 102 miRNAs that were differentially expressed in the HFD group compared with the NC group. Among those differentially expressed miRNAs, the expression levels of 28 miRNAs were reversed by SLBZS administration, suggesting the modulation effect of SLBZS on hepatic miRNA expression profiles. The qRT-PCR results confirmed that the expression levels of miR-155-5p, miR-146b-5p, miR-132-3p, and miR-34a-5p were consistent with those detected by sequencing. Bioinformatics analyses indicated that the target genes of the differentially expressed miRNAs reversed by SLBZS were mainly related to metabolic pathways. Conclusion. This study provides novel insights into the mechanism of SLBZS in protecting against NAFLD; this mechanism may be partly related to the modulation of hepatic miRNA expression and their target pathways.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 570-570
Author(s):  
Svenja Daschkey ◽  
Silja Röttgers ◽  
Jutta Bradtke ◽  
Andrea Teigler-Schlegel ◽  
Arndt Borkhardt ◽  
...  

Abstract Abstract 570 microRNAs (miRNAs) are small (21-24 nt), non-coding and highly conserved molecules, which are involved in several important regulatory processes like cell growth, proliferation, differentiation, immune response and apoptosis. Thus, their involvement in the pathogenesis of several diseases, including acute myeloid leukemia (AML) is not surprising. Several studies address the miRNA expression changes in adulthood AML, however, comprehensive studies in AML of children and adolescents are missing so far. We investigated the miRNA expression profiles of different AML subtypes from pediatric patients, in order to identify differentially expressed miRNAs. Subsequently, appropriate cell line models were used for global biochemical identification of miRNA targeting structures. miRNA expression profiles of 102 pediatric AML patient samples were identified using microarray technology, and analyzed by unsupervised hierarchical cluster analysis and statistical testing. AML subtypes with translocations t(8;21) and t(15;17) can be separated from each other, solely based on their miRNA expression profile, while other translocations involving mixed-lineage leukemia (MLL) rearrangements are interspersed and lack a characteristic miRNA signature. Only six and seven miRNAs are differentially expressed between AML samples with translocations t(8;21) and t(15;17), respectively, and all other AML subtypes. This is surprising, since patients of different AML subtypes, investigated in this study, differ greatly in their clinical presentation. Differentially expressed miRNAs contain lineage specific miRNAs (miR-223), oncogenic miRNAs (miR-21) and more ubiquitously expressed miRNAs (let-7b/c, miR-100, −125b and −181a/b) with no designated characteristics. Furthermore, these differentially expressed miRNAs were not described as abundant in adult AML patients. To gain further insights into the function of differentially expressed miRNAs, we established a modified PAR-CLIP method termed PAR-CLIP-Array (Photo-activatable-Ribonucleoside-Enhanced Crosslinking-Immunoprecipitation and Microarray Hybridization) for global identification of Ago-associated miRNAs and their mRNA-targets. On average 25% of mRNAs in AML cell lines bearing the AML1/ETO or PML/RARα translocation were identified in Argonaute complexes and carry at least one miRNA binding site and thus are under miRNA control. 60% and 27% of miRNAs and mRNAs, respectively, overlap between the four analyzed Argonaute proteins, while 50% and 52% (46 miRNAs and 241 mRNAs) were associated with one Argonaute protein specifically. However, pathway classification of Ago-associated target-mRNAs indicate more than 90% overlap between the Argonaute proteins and thus are indicative of a concerted action of these four proteins in 150 pathways identified. Moreover, miR-181a/b, up-regulated in t(15;17)-positive AML patients, were detected in association with the four human Argonaute proteins in NB4 cells and show binding sites for the protein kinase PDPK1 potentially leading to inhibition of AKT, whereas eight other Ago-associated miRNA sequence families (seqgrp-miR-98, −130a, −19a, −25, −27a, −301a, −361 and −320) in association with Ago3 are able to repress the upstream tumor suppressor TSC1 leading to activation of the mTOR pathway and increased cell growth. In addition, the repression of the MAP kinase phosphatase DUSP6 by four Ago-associated miRNA sequence families (seqgrp-miR-29a, −17, −125a and −98) leads to activation of proliferative genes in the MAPK pathway of both, t(8;21)- and t(15;17)-positive AML. In summary, miRNAs represent suitable biomarkers for differentiation of AML subtypes of pediatric AML patients. Furthermore, our studies show that the four human Argonaute proteins cooperate in the regulation of AML-relevant signaling pathways providing new insights into AML biology and may present the starting point for novel therapeutic interventions. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 31 (4) ◽  
pp. 645 ◽  
Author(s):  
Jihyun Kim ◽  
Jaewang Lee ◽  
Jin Hyun Jun

Recurrent implantation failure (RIF) is one of the main causes for the repeated failure of IVF, and the major reason for RIF is thought to be a miscommunication between the embryo and uterus. However, the exact mechanism underlying embryo–uterus cross-talk is not fully understood. The aim of the present study was to identify differentially expressed microRNAs (miRNAs) among blastocysts, non-outgrowth and outgrowth embryos in mice using microarray analysis. A bioinformatics analysis was performed to predict the potential mechanisms of implantation. The miRNA expression profiles differed significantly between non-outgrowth and outgrowth embryos. In all, 3163 miRNAs were detected in blastocysts and outgrowth embryos. Of these, 10 miRNA candidates (let-7b, miR-23a, miR-27a, miR-92a, miR-183, miR-200c, miR-291a, miR-425, miR-429 and miR-652) were identified as significant differentially expressed miRNAs of outgrowth embryos by in silico analysis. The expression of the miRNA candidates was markedly changed during preimplantation embryo development. In particular, let-7b-5p, miR-200c-3p and miR-23a-3p were significantly upregulated in outgrowth embryos compared with non-outgrowth blastocysts. Overall, differentially expressed miRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos could be involved in embryo attachment, and interaction between the embryo proper and maternal endometrium during the implantation process.


2019 ◽  
Vol 245 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Nan-Nan Shen ◽  
Chi Zhang ◽  
Zheng Li ◽  
Ling-Cong Kong ◽  
Xin-Hua Wang ◽  
...  

Association between microRNA (miRNA) expression signatures and atrial fibrillation has been evaluated with inconsistent findings in different studies. This study aims to identify miRNAs that actually play vital role in pathophysiological process of atrial fibrillation and explore miRNA-targeted genes and the involved pathways. Relevant studies were retrieved from the electronic databases of Embase, Medline, and Cochrane Library to determine the miRNA expression profiles between atrial fibrillation subjects and non-atrial fibrillation controls. Robustness of results was assessed using sensitivity analysis. Subgroup analyses were performed based on species, miRNA detection method, sample source, and ethnicity. Quality assessment of studies was independently conducted according to QUADAS-2. Bioinformatics analysis was applied to explore the potential genes and pathways associated with atrial fibrillation, which were targeted by differentially expressed miRNAs. Form of pooled results was shown as log10 odds ratios (logORs) with 95% confidence intervals (CI), and random-effects model was used. In total, 40 articles involving 283 differentially expressed miRNAs were reported. And 51 significantly dysregulated miRNAs were identified in consistent direction, with 22 upregulated and 29 downregulated. Among above-mentioned miRNAs, miR-223-3p (logOR 6.473; P < 0.001) was the most upregulated, while miR-1-5p (logOR 7.290; P < 0.001) was the most downregulated. Subgroup analysis confirmed 53 significantly dysregulated miRNAs (21 upregulated and 32 downregulated) in cardiac tissue, with miRNA-1-5p and miRNA-223-3p being the most upregulated and downregulated miRNAs, respectively. Additionally, miR-328 and miR-1-5p were highly blood-specific, and miR-133 was animal-specific. In the detection method sub-groups, miRNA-29b and miRNA-223-3p were differentially expressed consistently. Four miRNAs, including miRNA-223-3p, miRNA-21, miRNA-328, and miRNA-1-5p, were consistently dysregulated in both Asian and non-Asian. Results of sensitivity analysis showed that 47 out of 51 (92.16%) miRNAs were dysregulated consistently. Totally, 51 consistently dysregulated miRNAs associated with atrial fibrillation were confirmed in this study. Five important miRNAs, including miR-29b, miR-328, miR-1-5p, miR-21, and miR-223-3p may act as potential biomarkers for atrial fibrillation. Impact statement Atrial fibrillation (AF) is considered as the most common arrhythmia, and it subsequently causes serious complications including thrombosis and heart failure that increase the social burden. The definite mechanisms underlying AF pathogenesis remain complicated and unclear. Many studies attempted to discover the transcriptomic changes using microarray technologies, and the present studies for this hot topic have assessed individual miRNAs profiles for AF. However, results of different articles are controversial and not each reported miRNA is actually associated with the pathogenesis of AF. The present systematic review and meta-analysis identified that 51 consistently dysregulated miRNAs were associated with AF. Of these miRNAs, five miRNAs (miRNA-1-5p, miRNA-328, miRNA-29b, miRNA-21, and miRNA-223-3p) may act as novel biomarkers for AF. The findings could offer a better description of the biological characteristics of miRNAs, meanwhile might serve as new target for the intervention and monitoring AF in future studies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2699-2699
Author(s):  
Mehdi Nassiri ◽  
Joseph Olczyk ◽  
Samantha Knapp ◽  
Gail Vance ◽  
Anupama Tewari ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) is a hematopoietic malignancy with hybrid myeloproliferative and myelodysplastic features. The diagnostic criteria for CMML are evolving with the progress of our knowledge on various genetic lesions involved in the pathogenesis of myeloid neoplasms. This shift, including molecular genetic lesions in the diagnosis process, is highlighted in updated 2008 WHO classification system, which excludes myeloproliferative neoplasms with PDGFRB rearrangement, monocytosis and eosinophilia from CMML category. Despite these recent advancements, CMML remains a heterogeneous group of diseases with variable patient outcomes and no well-defined targeted therapy. To further investigate the biological diversity of this disorder, we studied microRNA (miRNA) expression profiles, their relation to the diagnostic and clinical parameters in CMML, and compared these profiles to global miRNA expression in normal reference bone marrow samples. MicroRNAs are a class of non-coding RNA molecules that alter gene expression by targeting and blocking mRNA. The role of miRNAs in carcinogenesis is related to their targeting of messenger RNAs encoding for oncogenes and tumor suppressor genes. Bone marrow samples from 22 patients with CMML were included in the study. Median age of the patients was 71 years with a range from 39 to 92 years. There were 15 males and 7 females. Seventeen patients presented with CMML-1 (blasts less than 5% in peripheral blood and less than 10% of bone marrow differential count). The remaining patients showed CMML-2. Nine patients had WBC below 13×109/L defining a myelodysplastic type of CMML. Cytogenetic results were available in 20 patients. Fourteen patients demonstrated a normal karyotype. Normal pooled bone marrow samples were used as a reference. The total RNA was isolated using RecoverAll RNA extraction kit. Micoroarray studies were performed using Agilent human miRNA microarrays (version 1.0) containing probes for 470 human and 64 human viral miRNAs cataloged in the Sanger database v9.1. The results were analyzed using BRB array tool and Genesis software. Unsupervised hierarchical clustering discovered two different groups of CMML samples with patterns of miRNA expression distinct from normal bone marrows (oneway ANOVA). Twenty seven miRNAs were differentially expressed in normal bone marrow reference samples vs. CMML-1 and -2. There was an overlap in miRNA profiles between groups of CMML based on blast percentage (CMML-1 vs. CMML-2), WBC count (&lt;13×109/L vs. ≥13×109/L) and presence or absence of cytogenetic abnormalities. However, using PAM algorithm the following miRNAs showed predictive power: hsa-miR-519b (in CMML-1 vs. 2); hsa-miR-15b and hsa-miR-432* (in groups of samples separated by a cut-off WBC of 13×109/L) and hsa-miR-223 (comparing CMML with and without cytogenetic abnormalities). In summary, significantly different miRNA profiles were seen in CMML as compared to normal reference bone marrow. Two distinct subgroups of CMML were defined by the miRNA expression profiles. Select miRNAs were differentially expressed in known biological and clinical subgroups of CMML. Further correlation of clinical and outcome data with subgroups of CMML defined by miRNA expression profiles will be presented.


2010 ◽  
Vol 53 (6) ◽  
pp. 734-736
Author(s):  
H. B. He ◽  
S. H. Zhao ◽  
X. Y. Li

Abstract. MicroRNAs (miRNAs) are a class of short, non-coding regulatory RNAs, which are approximately 22 nucleotides in length. Typically, miRNAs negatively regulate gene expression by binding with the 3' untranslated region (UTR) of its regulatory target mRNAs. MicroRNAs are known to play diverse roles in fundamental biological processes, such as proliferation, differentiation and apoptosis (Bartel 2004, 2009). It has been reported that miR-1, miR-133, miR-181 and miR-206 play important roles in skeletal muscle proliferation and hypertrophy (Callis et al. 2007, McCarthy -Esser 2007). We have detected porcine miRNA expression profiles during different stage of skeletal muscle development and a total of 140 miRNAs were differentially expressed (HUANG et al. 2008). In this study, we mapped five differentially expressed miRNAs (mir-29c, mir-103-1, mir-127, mir-193b and mir-218-1) using the radiation hybrid (IMpRH) panel (YERLE et al. 1998).


Reproduction ◽  
2019 ◽  
Vol 157 (6) ◽  
pp. 525-534 ◽  
Author(s):  
Hang Qi ◽  
Guiling Liang ◽  
Jin Yu ◽  
Xiaofeng Wang ◽  
Yan Liang ◽  
...  

MicroRNA (miRNA) expression profiles in tubal endometriosis (EM) are still poorly understood. In this study, we analyzed the differential expression of miRNAs and the related gene networks and signaling pathways in tubal EM. Four tubal epithelium samples from tubal EM patients and five normal tubal epithelium samples from uterine leiomyoma patients were collected for miRNA microarray. Bioinformatics analyses, including Ingenuity Pathway Analysis (IPA), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of five miRNAs was performed in six tubal epithelium samples from tubal EM and six from control. A total of 17 significantly differentially expressed miRNAs and 4343 potential miRNA-target genes involved in tubal EM were identified (fold change >1.5 and FDR-adjustedPvalue <0.05). IPA indicated connections between miRNAs, target genes and other gynecological diseases like endometrial carcinoma. GO and KEGG analysis revealed that most of the identified genes were involved in the mTOR signaling pathway, SNARE interactions in vesicular transport and endocytosis. We constructed an miRNA-gene-disease network using target gene prediction. Functional analysis showed that the mTOR pathway was connected closely to tubal EM. Our results demonstrate for the first time the differentially expressed miRNAs and the related signal pathways involved in the pathogenesis of tubal EM which contribute to elucidating the pathogenic mechanism of tubal EM-related infertility.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9000
Author(s):  
Qi Zheng ◽  
Xiaoyong Wei ◽  
Jun Rao ◽  
Cuncai Zhou

Backgroud It has been shown that aberrant expression of microRNAs (miRNAs) and transcriptional factors (TFs) is tightly associated with the development of HCC. Therefore, in order to further understand the pathogenesis of HCC, it is necessary to systematically study the relationship between the expression of miRNAs, TF and genes. In this study, we aim to identify the potential transcriptomic markers of HCC through analyzing common microarray datasets, and further establish the differential co-expression network of miRNAs–TF–mRNA to screen for key miRNAs as candidate diagnostic markers for HCC. Method We first downloaded the mRNA and miRNA expression profiles of liver cancer from the GEO database. After pretreatment, we used a linear model to screen for differentially expressed genes (DEGs) and miRNAs. Further, we used weighed gene co-expression network analysis (WGCNA) to construct the differential gene co-expression network for these DEGs. Next, we identified mRNA modules significantly related to tumorigenesis in this network, and evaluated the relationship between mRNAs and TFs by TFBtools. Finally, the key miRNA was screened out in the mRNA–TF–miRNA ternary network constructed based on the target TF of differentially expressed miRNAs, and was further verified with external data set. Results A total of 465 DEGs and 215 differentially expressed miRNAs were identified through differential genes expression analysis, and WGCNA was used to establish a co-expression network of DEGs. One module that closely related to tumorigenesis was obtained, including 33 genes. Next, a ternary network was constructed by selecting 256 pairs of mRNA–TF pairs and 100 pairs of miRNA–TF pairs. Network mining revealed that there were significant interactions between 18 mRNAs and 25 miRNAs. Finally, we used another independent data set to verify that miRNA hsa-mir-106b and hsa-mir-195 are good classifiers of HCC and might play key roles in the progression of HCC. Conclusion Our data indicated that two miRNAs—hsa-mir-106b and hsa-mir-195—are identified as good classifiers of HCC.


Sign in / Sign up

Export Citation Format

Share Document