Heme-Induced Neutrophil Extracellular Traps (NETs) Formation Contributes To Sickle Cell Disease Pathogenesis

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 184-184 ◽  
Author(s):  
Grace Chen ◽  
Tobias A. Fuchs ◽  
Denisa D. Wagner ◽  
Paul S. Frenette

Abstract Sickle cell disease (SCD) is characterized by chronic inflammation, continuous oxidative stress and severe hemolysis. Activation of endothelial cells, adhesion of sickle erythrocytes and polymorphonuclear neutrophils (PMNs) have been reported to mediate SCD vaso-occlusion. PMNs from SCD patients produce significantly higher basal levels of reactive oxygen species (ROS) and contain less intracellular ROS scavengers than normal individuals. The formation of neutrophil extracellular traps (NETs), which requires the upregulation of intracellular ROS, has been described as a critical innate mechanism to contain infectious insults and to participate in thromboinflammatory injury. In addition, histones and granular proteins released during NET formation can directly damage lung microvascular endothelial cells. Based on these results, we explored the possibility that neutrophils contribute to SCD pathophysiology through NETs. To investigate the presence of NETs in vivo, we used a humanized mouse model of SCD that expresses human sickle hemoglobin exclusively and shares many features of human SCD. Immunofluorescence images of lung samples revealed a significantly higher number of NET DNA fibers in SCD mice (22.6 ± 2.8 NETs/field of view) compared to control mice (5.96 ± 0.86 NETs/field of view, p<0.0001) following proinflammatory cytokine (TNF-α) challenge. We confirmed that these DNA fibers were not resulting from section artifacts or remnants of apoptotic or necrotic cells by co-staining these fibers with antibodies against citrullinated histone H3 and neutrophil elastase (NE), both of which have been identified as markers of NETs. Citrullinated histone H3+ NE+ NETs were identified in the lungs of SCD mice and were found within blood vessels. Concurrently, the soluble NET component plasma DNA was significantly higher in the peripheral blood of SCD mice compared to control mice (∼524 versus ∼48 ng/ml, p<0.001). Further, plasma nucleosomes were detectable only in SCD mice (∼0.11 U/ml). We also found that SCD mice experienced body temperature decline (a reduction of 5.3 ± 1.0°C) following TNF-α challenge whereas the body temperature of control mice was unaffected. A significant positive correlation was found between numbers of NETs and reduction of body temperature in these mice (r=0.72, p<0.0001). DNase I treatment reduced NETs by 38% in SCD mice (12.2 ± 0.9 versus 7.5 ± 0.7 NETs/field of view, for vehicle- and DNase I-treated, respectively, p<0.001), protected these mice from NET-associated hypothermia and significantly prolonged their survival (p<0.05) compared to vehicle-treated SCD mice. As a result of chronic hemolysis, SCD is associated with increased plasma heme. Like SCD patients, SCD mice have significantly higher plasma heme concentration compared to control mice (50.8 ± 5.2 versus 23.8 ± 2.8 μM, p<0.001). We hypothesized that heme is the plasma factor that stimulates PMNs to produce NETs in SCD mice. In vitro study showed that heme activated PMNs to produce citrullinated histone H3+ NE+ NETs in a ROS- and heme-iron dependent manner. Heme injection significantly increased NET formation in control mice (4.5 ± 0.7 versus 9.6 ± 1.7 NETs/field of view for vehicle- and heme-treated, respectively, p<0.01) and accounted for the acute body temperature decline in these mice (3.1 ± 0.8°C, p<0.01). On the other hand, hemopexin administration, which decreased total plasma heme concentration in SCD mice, reduced NET formation by 41% (11.6 ± 0.8 versus 6.9 ± 0.7 NETs/field of view, for vehicle- and hemopexin-treated, respectively, p<0.0001) and protected treated mice from NET-associated hypothermia. Our study thus demonstrates that NETs may contribute to the pathogenesis of SCD and that heme released during hemolysis promotes NET generation in vivo. Targeting heme-mediated NET formation may represent a useful strategy in managing SCD and other pathological states involving severe hemolysis. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 319 (1) ◽  
pp. L137-L147 ◽  
Author(s):  
Kristin M. Hudock ◽  
Margaret S. Collins ◽  
Michelle Imbrogno ◽  
John Snowball ◽  
Elizabeth L. Kramer ◽  
...  

Neutrophil extracellular traps (NETs) provide host defense but can contribute to the pathobiology of diverse human diseases. We sought to determine the extent and mechanism by which NETs contribute to human airway cell inflammation. Primary normal human bronchial epithelial cells (HBEs) grown at air-liquid interface and wild-type (wt)CFBE41o- cells (expressing wtCFTR) were exposed to cell-free NETs from unrelated healthy volunteers for 18 h in vitro. Cytokines were measured in the apical supernatant by Luminex, and the effect on the HBE transcriptome was assessed by RNA sequencing. NETs consistently stimulated IL-8, TNF-α, and IL-1α secretion by HBEs from multiple donors, with variable effects on other cytokines (IL-6, G-CSF, and GM-CSF). Expression of HBE RNAs encoding IL-1 family cytokines, particularly IL-36 subfamily members, was increased in response to NETs. NET exposure in the presence of anakinra [recombinant human IL-1 receptor antagonist (rhIL-1RA)] dampened NET-induced changes in IL-8 and TNF-α proteins as well as IL-36α RNA. rhIL-36RA limited the increase in expression of proinflammatory cytokine RNAs in HBEs exposed to NETs. NETs selectively upregulate an IL-1 family cytokine response in HBEs, which enhances IL-8 production and is limited by rhIL-1RA. The present findings describe a unique mechanism by which NETs may contribute to inflammation in human lung disease in vivo. NET-driven IL-1 signaling may represent a novel target for modulating inflammation in diseases characterized by a substantial NET burden.


2021 ◽  
Vol 11 (11) ◽  
pp. 1514
Author(s):  
Yue Kong ◽  
Guiqin He ◽  
Xiaolin Zhang ◽  
Jin Li

Peripheral inflammation plays a key role in the development of depression-like behaviors. However, the mechanisms underlying these effects remain largely unknown. Here, we found that the level of citrullinated histone H3 (cit-H3) significantly increased in the plasma of wildtype mice treated with lipopolysaccharide (LPS), which indicated that neutrophil extracellular traps (NETs) were formed. Moreover, the LPS-induced depression-like and asocial behaviors were significantly alleviated in the mice deficient of NETs. Mechanistically, NETs formation aggravated peripheral inflammation by increasing the concentrations of TNF-α, IL-1β and IL-6 in plasma, which are major proinflammatory cytokines that can enter the brain, resulting in microglia activation and reduced astrocytes. Following this, increased TNF-α and IL-1β were released into brain, inducing neuroinflammation and finally depression-like behaviors. Prohibiting NETs by PAD4 ablation significantly prevented LPS-induced microglia activation and the loss of astrocytes. Our results propose the role for peripheral NETs in LPS-induced depression-like behavior, and that NETs might be a potential target to prevent inflammation-induced major depressive disorder.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Ondracek ◽  
T.M Hofbauer ◽  
A Mangold ◽  
T Scherz ◽  
V Seidl ◽  
...  

Abstract Introduction Leukocyte-mediated inflammation is crucial in acute myocardial infarction (AMI). We recently observed that neutrophil extracellular traps (NETs) are increased at the culprit site, promoting activation and differentiation of fibrocytes, cells with mesenchymal and leukocytic properties. Fibrocyte migration is mediated by monocyte chemoattractant protein (MCP)-1 and C-C chemokine receptor type 2 (CCR2). We investigated the interplay between NETs, fibrocyte function, and MCP-1 in AMI. Methods Culprit site and femoral blood of AMI patients was drawn during percutaneous coronary intervention. We characterized CCR2 expression of fibrocytes by flow cytometry. MCP-1 and the NET marker citrullinated histone H3 (citH3) were measured by ELISA. Fibrocytes were treated in vitro with MCP-1. Human coronary arterial endothelial cells (hCAECs) were stimulated with isolated NETs, and MCP-1 was measured by ELISA and qPCR. The influence of MCP-1 on NET formation in vitro was assessed using isolated neutrophils. Results We have included 50 consecutive AMI patients into the study. NETs and concentrations of MCP-1 were increased at the CLS. NET stimulation of hCAECs induced MCP-1 on mRNA and protein level. Increasing MCP-1 gradient was associated with fibrocyte accumulation at the site of occlusion. In the presence of higher MCP-1 these fibrocytes expressed proportionally less CCR2 than peripheral fibrocytes. In vitro, MCP-1 dose-dependently decreased fibrocyte CCR2 and reduced ex vivo NET release of healthy donor neutrophils. Conclusions NETs induce endothelial MCP-1 release, presumably promoting a chemotactic gradient for leukocyte and fibrocyte migration. MCP-1 mediated inhibition of NET formation could point to a negative feedback loop. These data will shed light on vascular healing. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Austrian Science Fund


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


1994 ◽  
Vol 2 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Ursula Gotsch ◽  
Ute Jäger ◽  
Mara Dominis ◽  
Dietmar Vestweber
Keyword(s):  

2021 ◽  
pp. 1098612X2110449
Author(s):  
Ronald HL Li ◽  
Nghi Nguyen ◽  
Joshua A Stern ◽  
Laetitia M Duler

Objectives The aim of this study was to investigate the spatial distribution of neutrophil extracellular traps (NETs) in cardiogenic arterial thromboembolism (CATE). Specifically, we aimed to examine the related structural features of NETs in feline arterial thrombi in relation to their arterial locations. Methods Paraffin-embedded aortic bifurcations from nine cats with hypertrophic cardiomyopathy (four with CATE and five without) were deparaffinized, and NETs were identified by immunodetection based on colocalization of cell-free DNA, citrullinated histone H3 and neutrophil elastase. The distribution of NETs in thrombi within the aortic bifurcations and common iliac arteries (CIAs) was compared based on their proximity to the descending aorta (proximal, mid, distal). Ten random fields per section were captured at × 10 and × 20 magnification for each section of the clot and analyzed. Results The distributions of NETs in thrombi within the aortic bifurcation and CIAs were found to differ in relation to their assigned zones (proximal, mid, distal; P = 0.04); NETs were concentrated mostly in the proximal region in the aortic bifurcations (47.56%, interquartile range [IQR] 14.07–77.95) and CIAs (44.69%, IQR 24.65–85.28), compared with the distal regions (2.69%, IQR 0.10–50.04 [P = 0.027]; 7.08%, IQR 1.27–59.33 [P = 0.02]). Conclusions and relevance The variation in NET distribution within arterial thrombi may shed light on the pathogenesis of thrombus growth. This may be due to possible neutrophil entrapment or variations in shear stress.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250265
Author(s):  
Hubert Hayden ◽  
Nahla Ibrahim ◽  
Johannes Klopf ◽  
Branislav Zagrapan ◽  
Lisa-Marie Mauracher ◽  
...  

Over the past years, neutrophil extracellular traps (NETs) were shown to contribute to states of acute and chronic inflammatory disease. They are composed of expelled chromatin and decorated by neutrophil-derived proteins. Therefore, the analysis of DNA complexes with myeloperoxidase (MPO) by ELISA has become an attractive tool to measure NET formation in in vitro and in vivo samples. When we used a published MPO-DNA ELISA protocol and included an isotype control for the anti-MPO coating antibody, we observed high assay specificity for in vitro prepared NET samples, whereas the specificity for in vivo plasma samples was low. In addition, the assay failed to detect in vitro generated MPO-DNA complexes when spiked into plasma. Therefore, we set out to improve the specificity of the MPO-DNA ELISA for plasma samples. We found that the use of Fab fragments or immunoglobulins from different species or reversal of the antibody pair led to either a high background or a low dynamic range of detection that did not improve the specificity for plasma samples. Also, the use of higher plasma dilutions or pre-clearing of plasma immunoglobulins were ineffective. Finally, we found that a commercial reagent designed to block human anti-mouse antibodies and multivalent substances increased the detection window between the MPO antibody and isotype control for highly diluted plasma. We applied this modified ELISA protocol to analyze MPO-DNA complexes in human blood samples of acute and chronic inflammatory conditions. While markers of neutrophil activation and NET formation such as MPO, elastase and citrullinated histone H3 correlated significantly, we observed no correlation with the levels of MPO-DNA complexes. Therefore, we conclude that ELISA measurements of MPO-DNA complexes in human plasma are highly questionable regarding specificity of NET detection. In general, plasma analyses by ELISA should more frequently include isotype controls for antibodies to demonstrate target specificity.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3228-3235 ◽  
Author(s):  
A. Zakrzewicz ◽  
M. Gräfe ◽  
D. Terbeek ◽  
M. Bongrazio ◽  
W. Auch-Schwelk ◽  
...  

Abstract To characterize L-selectin–dependent cell adhesion to human vascular endothelium, human cardiac microvascular endothelial cells (HCMEC) and human coronary endothelial cells (HCEC) were isolated from explanted human hearts. The adhesion behavior of human (NALM-6) and mouse (300.19) pre-B cells transfected with cDNA encoding for human L-selectin was compared with that of the respective nontransfected cells in a flow chamber in vitro. More than 80% of the adhesion to tumor necrosis factor-α (TNF-α)–stimulated HCMEC at shear stresses <2 dyne/cm2 was L-selectin dependent and could be equally well blocked by an anti–L-selectin antibody or a L-selectin-IgG-chimera. No L-selectin dependent adhesion to HCEC could be shown. The L-selectin dependent adhesion to HCMEC was insensitive to neuraminidase, but greatly inhibited by addition of NaClO3 , which inhibits posttranslational sulfation and remained elevated for at least 24 hours of stimulation. E-selectin dependent adhesion of HL60 cells to HCMEC was blocked by neuraminidase, but not by NaClO3 and returned to control levels within 18 hours of HCMEC stimulation. It is concluded that microvascular, but not macrovascular endothelial cells express TNF-α–inducible sulfated ligand(s) for L-selectin, which differ from known L-selectin ligands, because sialylation is not required. The prolonged time course of L-selectin dependent adhesion suggests a role in sustained leukocyte recruitment into inflammatory sites in vivo.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yilu Zhou ◽  
Weimin Tao ◽  
Fuyi Shen ◽  
Weijia Du ◽  
Zhendong Xu ◽  
...  

Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.


Sign in / Sign up

Export Citation Format

Share Document