The Hypoxia Inducible Factor-2/Arginase-1 Axis Plays An Adaptive Role In Gvhd

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2006-2006
Author(s):  
Rena Feinman ◽  
Iriana Colorado ◽  
Jenny Zilberberg ◽  
Thobekile T Ndlovu ◽  
Moshe Z Miller ◽  
...  

Abstract The intestinal epithelium is a primary target of graft-versus-host disease (GVHD). The hypoxia-signaling pathway has been implicated as an adaptive response in the intestinal epithelium in numerous models of inflammatory bowel disease, such as colitis and T-cell induced diarrhea. The transcription factor family, hypoxia-inducible factor (HIF) has emerged as master regulators of the transcriptional response to hypoxic stress in normal and transformed cells. HIF heterodimers consist of an oxygen-labile α subunit (HIF-1α, HIF-2α) and a constitutively expressed HIF-1β subunit that mediate a wide spectrum of physiological and cellular adaptive responses, including angiogenesis, metabolic adaption, and erythropoiesis. HIF-1 has recently been implicated as a gut-protective factor in inflammatory bowel disease models by maintaining intestinal homeostasis. HIF-1 can also skew the differentiation of T cells to regulatory T cells (Treg) via the induction of FoxP3, thereby attenuating T-cell driven colitis. Although HIF-1 and HIF-2 share many overlapping functions, HIF-1 has been implicated in the inflammatory phenotype of M1 macrophages via inducible nitric oxide synthase (iNOS) whereas HIF-2 is involved in the anti-inflammatory phenotype of M2 macrophages via arginase-1 (Arg1). Based on these findings and that mucosal inflamed tissues are hypoxic, we hypothesized that the induction of the hypoxia-signaling pathway may limit GVHD-induced mucosal inflammation and injury. To determine the adaptive roles of HIF-1 and HIF-2 in GVHD, we first tested the major histocompatibility complex (MHC)-haploidentical C567BL/6 (B6,H2b) -> B6xDBA/2 (B6D2)F1 (H2b/d) model in which donor spenocytes (2x107) and anti-Thy1 + C’ treated (T- cell depleted) bone marrow (ATBM) cells (5x106) are transplanted into B6D2F1 recipients after exposure to lethal irradiation (11Gy, split dose). B6 ATBM cells transplanted alone into B6D2F1 mice served as a negative control for all comparisons. Realtime PCR analysis demonstrated a modest increase in ileal mucosal HIF-2α expression 8 days (d) post-transplant (p<0.027). In contrast, HIF-1α mRNA levels were not induced. However, both HIF-1α and HIF-2α protein levels were upregulated 2-fold and 5-fold, respectively, in the ileal mucosa of B6D2F1 recipients receiving ATBM plus splenocytes, as determined by western blotting. Notably, Arg1 mRNA levels (HIF-2 target) were markedly upregulated during GVHD (p<0.018), whereas iNOS mRNA levels (HIF-1α target) were downregulated (p<0.01). Increased HIF-2α and Arg1 expression in the ileum as a consequence of GVHD was also observed in two MHC H2b-matched, minor histocompatability antigen (miHA)-mismatched models. BALB.B and CXB-2 mice were exposed to lethal irradiation (9Gy, split dose) and transplanted with B6 ATBM cells alone or along with host-presensitized B6 CD4+ T cells. After 8d, HIF-2α and HIF-1α mRNA ileal levels were increased and decreased, respectively, in both models undergoing GVHD. Similarly, Arg1 transcripts were increased by 12-fold (p<0.03) and 6.1 fold (p<0.007), respectively in B6->BALB.B and B6->CXB-2 models. However, after 20d post-transplant, a 4- and 3-fold decrease in Arg1 mRNA levels occurred in both models. Likewise, two anti-inflammatory, Treg-associated cytokines, interleukin-10 (IL-10) and transforming growth factor beta (TGFβ) mRNA expression were elevated by 2-and 7-fold, respectively, after d8 in B6->BALB.B mice. TGFβ levels returned to baseline (p<0.05 vs d8) after 20d and IL-10 mRNA levels were reduced by 2.5 fold (p<0.029 vs d8). Lastly, in an ELISpot assay, the addition of a prolyl hydroxylase inhibitor, dimethyloxaloylgylcine (DMOG), a HIF activator, reduced the alloreactive interferon-γ response to vehicle levels (p>0.001) in a B6 anti-B6D2F1 mixed lymphocyte reaction. Taken together, our data suggest that HIF-2/Arg1 axis confers an anti-inflammatory response in the ileum after 8d of GVHD. However, after 20d, this response is inversely correlated with the lethality of the GVHD response. The amelioration of alloreactivity by DMOG suggests that the persistent activation of HIF may be necessary to dampen GVHD. Further studies will delineate the contribution of the HIF-2 response in the maintenance of intestinal homeostasis and limiting T cell alloreactivity. Disclosures: Zilberberg: Onyx Pharmaceuticals: Research Funding. Dziopa:Onyx Pharmaceuticals: Research Funding.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


1999 ◽  
Vol 190 (5) ◽  
pp. 607-616 ◽  
Author(s):  
Hideki Iijima ◽  
Ichiro Takahashi ◽  
Daisuke Kishi ◽  
Jin-Kyung Kim ◽  
Sunao Kawano ◽  
...  

T cell receptor α chain–deficient (TCR-α−/−) mice are known to spontaneously develop inflammatory bowel disease (IBD). The colitis that develops in these mice is associated with increased numbers of T helper cell (Th)2-type CD4+TCR-ββ (CD4+ββ) T cells producing predominantly interleukin (IL)-4. To investigate the role of these Th2-type CD4+ββ T cells, we treated TCR-α−/− mice with anti–IL-4 monoclonal antibody (mAb). Approximately 60% of TCR-α−/− mice, including those treated with mock Ab and those left untreated, spontaneously developed IBD. However, anti–IL-4 mAb–treated mice exhibited no clinical or histological signs of IBD, and their levels of mucosal and systemic Ab responses were lower than those of mock Ab–treated mice. Although TCR-α−/− mice treated with either specific or mock Ab developed CD4+ββ T cells, only those treated with anti–IL-4 mAb showed a decrease in Th2-type cytokine production at the level of mRNA and protein and an increase in interferon γ–specific expression. These findings suggest that IL-4–producing Th2-type CD4+ββ T cells play a major immunopathological role in the induction of IBD in TCR-α−/− mice, a role that anti–IL-4 mAb inhibits by causing Th2-type CD4+ββ T cells to shift to the Th1 type.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 796
Author(s):  
Jeong Hee An ◽  
Da Hye Cho ◽  
Ga Young Lee ◽  
Min Su Kang ◽  
So Jeong Kim ◽  
...  

Obesity is associated with an impaired balance of CD4+ T cell subsets. Both vitamin D and obesity have been reported to affect the mTOR pathway. In this study, we investigated the effects of vitamin D on CD4+ T cell subsets and the mTOR pathway. Ten-week-old male C57BL/6 mice were divided into four groups and fed diets with different fat (control or high-fat diets: CON or HFD) and vitamin D contents (vitamin D control or supplemented diets: vDC or vDS) for 12 weeks. T cells purified by negative selection were stimulated with anti-CD3/anti-CD28 mAbs and cultured for 48 h. The percentage of CD4+IL-17+ T cells was higher in the vDS than vDC groups. The CD4+CD25+Foxp3+ T cells percentage was higher in HFD than CON groups. The phospho-p70S6K/total-p70S6K ratio was lower in vDS than vDC, but the phospho-AKT/total-AKT ratio was higher in vDS than vDC groups. Hif1α mRNA levels were lower in vDS than vDC groups. These findings suggest HIF1α plays an important role in vitamin-D-mediated regulation of glucose metabolism in T cells, and dietary vitamin D supplementation may contribute to the maintenance of immune homeostasis by regulating the mTOR pathway in T cells.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2420
Author(s):  
Minju Lee ◽  
Gee-Hye Kim ◽  
Miyeon Kim ◽  
Ji Min Seo ◽  
Yu Mi Kim ◽  
...  

Mesenchymal stem cells (MSCs) are accessible, abundantly available, and capable of regenerating; they have the potential to be developed as therapeutic agents for diseases. However, concerns remain in their further application. In this study, we developed a SMall cell+Ultra Potent+Scale UP cell (SMUP-Cell) platform to improve whole-cell processing, including manufacturing bioreactors and xeno-free solutions for commercialization. To confirm the superiority of SMUP-Cell improvements, we demonstrated that a molecule secreted by SMUP-Cells is capable of polarizing inflammatory macrophages (M1) into their anti-inflammatory phenotype (M2) at the site of injury in a pain-associated osteoarthritis (OA) model. Lipopolysaccharide-stimulated macrophages co-cultured with SMUP-Cells expressed low levels of M1-phenotype markers (CD11b, tumor necrosis factor-α, interleukin-1α, and interleukin-6), but high levels of M2 markers (CD163 and arginase-1). To identify the paracrine action underlying the anti-inflammatory effect of SMUP-Cells, we employed a cytokine array and detected increased levels of pentraxin-related protein-3 (PTX-3). Additionally, PTX-3 mRNA silencing was applied to confirm PTX-3 function. PTX-3 silencing in SMUP-Cells significantly decreased their therapeutic effects against monosodium iodoacetate (MIA)-induced OA. Thus, PTX-3 expression in injected SMUP-Cells, applied as a therapeutic strategy, reduced pain in an OA model.


2021 ◽  
Vol 22 (23) ◽  
pp. 13003
Author(s):  
Yu-Chen Hou ◽  
Man-Hui Pai ◽  
Jin-Ming Wu ◽  
Po-Jen Yang ◽  
Po-Chu Lee ◽  
...  

This study investigated the effects of l-glutamine (Gln) and/or l-leucine (Leu) administration on sepsis-induced skeletal muscle injuries. C57BL/6J mice were subjected to cecal ligation and puncture to induce polymicrobial sepsis and then given an intraperitoneal injection of Gln, Leu, or Gln plus Leu beginning at 1 h after the operation with re-injections every 24 h. All mice were sacrificed on either day 1 or day 4 after the operation. Blood and muscles were collected for analysis of inflammation and oxidative damage-related biomolecules. Results indicated that both Gln and Leu supplementation alleviated sepsis-induced skeletal muscle damage by reducing monocyte infiltration, calpain activity, and mRNA expression levels of inflammatory cytokines and hypoxia-inducible factor-1α. Furthermore, septic mice treated with Gln had higher percentages of blood anti-inflammatory monocytes and muscle M2 macrophages, whereas Leu treatment enhanced the muscle expressions of mitochondrion-related genes. However, there were no synergistic effects when Gln and Leu were simultaneously administered. These findings suggest that both Gln and Leu had prominent abilities to attenuate inflammation and degradation of skeletal muscles in the early and/or late phases of sepsis. Moreover, Gln promoted the switch of leukocytes toward an anti-inflammatory phenotype, while Leu treatment maintained muscle bioenergetic function.


2018 ◽  
Vol 27 (9) ◽  
pp. 1352-1367 ◽  
Author(s):  
Fu Yuan Yang ◽  
Rui Chen ◽  
Xiaohu Zhang ◽  
Biao Huang ◽  
Lai Ling Tsang ◽  
...  

Mesenchymal stem cell (MSC)-based cell therapy has been demonstrated as a promising strategy in the treatment of inflammatory bowel disease (IBD), which is considered an immune disease. While the exact mechanisms underlying the therapeutic effect of MSCs are still unclear, MSCs display anti-inflammatory and immunomodulatory effects by interacting with various immunoregulatory cells. Our previous studies have shown that MSCs can be preconditioned and deconditioned with enhanced cell survival, differentiation and migration. In this study, we evaluated the effect of preconditioning on the immunoregulatory function of human umbilical cord-derived MSCs (hUCMSCs) and their therapeutic effect on treating IBD. Our results show that intraperitoneal administration of deconditioned hUCMSCs (De-hUCMSCs) reduces the disease activity index (DAI), histological colitis score and destruction of the epithelial barrier, and increases the body weight recovery more intensively than that of un-manipulated hUCMSCs. In addition, De-hUCMSCs but not hUCMSCs elicit anti-apoptotic effects via induction of the ERK pathway during the early stage of IBD development. In vitro co-culture studies indicate that De-hUCMSCs suppress T-cell proliferation and activation more markedly than hUCMSCs. Moreover, De-hUCMSCs block the induction of inflammatory cytokines such as tumor necrosis factor (TNF)α and interleukin (IL)-2, while promoting the secretion of the anti-inflammatory cytokine IL-10 in T-cells. Mechanically, we find that prostaglandin E2 (PGE2) secretion is significantly increased in De-hUCMSCs, the suppression of which dramatically abrogates the inhibitory effect of De-hUCMSCs on T-cell activation, implying that the crosstalk between De-hUCMSCs and T-cells is mediated by PGE2. Together, we have demonstrated that preconditioning enhances the immunosuppressive and therapeutic effects of hUCMSCs on treating IBD via increased secretion of PGE2.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Pilar Alcaide ◽  
Anna Grodecki-Pena ◽  
Andrew Knapp ◽  
Tanya Kershaw ◽  
Mark Aronovitz ◽  
...  

Left ventricular dysfunction and Heart Failure (HF) are associated with systemic inflammation with clinical data showing that HF patients have higher levels of circulating pro-inflammatory cytokines. Recruitment of circulating T cells to tissues across the vascular endothelium is a key event in the inflammatory response, but whether it plays a role in the heart in HF is unknown. We hypothesized that pressure overload induced HF activates cardiac endothelial cells resulting in T cell recruitment into the left ventricle (LV). Using transverse aortic constriction (TAC), quantitative flow cytometry, immunohistochemistry, qPCR and real time live cell videomicroscopy, we examined mRNA and protein expression levels of endothelial cell adhesion molecules and the presence of T cell infiltrates in the LV in vivo , and also studied the T cell interactions with primary mouse heart endothelial cells (MHEC) under flow conditions in vitro , comparing Sham and TAC operated mice (6-10/group) during the course of HF. 48h after TAC, in the pre-hypertrophic state, no differences were observed in the recruitment of T cells in the LV. Interestingly, two and four weeks after TAC, when mice developed LVH and LV dysfunction (Fractional Shortening 25±13%), E-Selectin, VCAM-1 and ICAM-1 mRNA levels were significantly upregulated in the LV as compared to Sham mice (2.3, 2.8 and 4 fold, respectively), with notable enhancement of endothelial ICAM-1 protein levels in the LV intramyocardial vessels, and T cells infiltrated in the LV in response to TAC (P≤0.05 TAC vs Sham). Furthermore, T cells isolated from mice 2 and 4 weeks after TAC adhered to MHEC under flow conditions in significantly higher numbers than T cells from Sham mice (P≤0.01 TAC vs Sham). Systemically, the frequency of three different T cell subsets in the peripheral lymphoid organs was increased in TAC vs Sham mice, indicating activation of the adaptive immune response to pressure overload. Taken together, our studies indicate that activation of the heart vascular endothelium occurs in response to pressure overload resulting in T cell recruitment into the LV. Further studies will be needed to determine in the extent to which T cell recruitment into the heart contributes to the pathogenesis of HF.


2020 ◽  
Vol 117 (32) ◽  
pp. 19408-19414 ◽  
Author(s):  
Michael P. Crawford ◽  
Sushmita Sinha ◽  
Pranav S. Renavikar ◽  
Nicholas Borcherding ◽  
Nitin J. Karandikar

Untoward effector CD4+ T cell responses are kept in check by immune regulatory mechanisms mediated by CD4+ and CD8+ T cells. CD4+ T helper 17 (Th17) cells, characterized by IL-17 production, play important roles in the pathogenesis of autoimmune diseases (such as arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, among others) and in the host response to infection and cancer. Here, we demonstrate that human CD4+ T cells cells exposed to a Th17-differentiating milieu are significantly more resistant to immune suppression by CD8+ T cells compared to control Th0 cells. This resistance is mediated, in part, through the action of IL-17A, IL-17F, and IL-17AF heterodimer through their receptors (IL-17RA and IL-17RC) on CD4+ T cells themselves, but not through their action on CD8+ T cells or APC. We further show that IL-17 can directly act on non-Th17 effector CD4+ T cells to induce suppressive resistance, and this resistance can be reversed by blockade of IL-1β, IL-6, or STAT3. These studies reveal a role for IL-17 cytokines in mediating CD4-intrinsic immune resistance. The pathways induced in this process may serve as a critical target for future investigation and immunotherapeutic intervention.


2019 ◽  
Vol 12 (4) ◽  
pp. 980-989 ◽  
Author(s):  
I. T. Chyuan ◽  
H. F. Tsai ◽  
C. S. Wu ◽  
P. N. Hsu

AbstractTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cell apoptosis by transducing apoptosis signals. Recently, accumulating evidence demonstrated that TRAIL regulates autoimmune inflammation and immune cell homeostasis in several autoimmune animal models, suggesting a novel immunoregulatory role of TRAIL in autoimmune diseases. However, the impact of TRAIL in inflammatory bowel disease is yet undefined. This study is to address the therapeutic effects and immunoregulatory role of TRAIL in autoimmune gut inflammation. We demonstrated herein that TRAIL significantly suppressed gut inflammation and reduced the severity of colitis in a dextran sodium sulfate (DSS)-induced colitis model. Suppression of gut inflammation was not due to induction of apoptosis in colonic T cells, dendritic cells, or epithelium cells by TRAIL. In contrast, TRAIL directly inhibited activation of colitogenic T cells and development of gut inflammation in an adoptive transfer-induced colitis model. The anti-inflammatory effects of TRAIL on colitis were abolished when T cells from TRAIL receptor (TRAIL-R) knockout mice were adoptively transferred, suggesting that TRAIL regulates autoreactive colitogenic T-cell activation in the development of gut inflammation. Our results demonstrate that TRAIL effectively inhibited colonic T-cell activation and suppressed autoimmune colitis, suggesting a potential therapeutic application of TRAIL in human inflammatory bowel disease.


Sign in / Sign up

Export Citation Format

Share Document