High Transcription Levels Of S100A8 and S100A9 In Acute Myeloid Leukemia Are Predictors For Poor Overall Survival

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2610-2610 ◽  
Author(s):  
Shao-yan Hu ◽  
Ming-ying Zhang ◽  
Shui-yan Wu ◽  
Dong Wu ◽  
Neetika Ashwani ◽  
...  

Abstract S100A8 and S100A9 are two members of the S100 calcium-binding protein family, preferentially form functional heterodimers of S100A8/S100A9, and have been increasingly recognized as biomarkers in malignancies. Recent proteomic studies revealed that S100A8 and S100A9 played pivotal roles in hematologic malignancies and elevated expression of S100A8/S100A9 implicated in glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia (ALL). In addition, S100A8 proteomic expression in leukemic cells was reported to predict survival in AML patients. However, information on the gene expression level of S100A8 and S100A9 and their clinical correlation in acute myeloid leukemia (AML) is lacking. Using the real-time quantitative RT-PCR, we analyze the transcription levels of S100A8 and S100A9 in AML patient leukemic specimens underwent pre-planned induction chemotherapy. A total of 189 patient cases at different stages of AML (excluding acute promyelocytic leukemia [APL]), including 91 newly diagnosed AML, 64 patient remission marrow specimens and 34 patient specimens as well as 20 controls without leukemia were included in the study collected from the period between 2007 and 2011. Among the cohort of 91 newly diagnosed AML, the over all median OS was 20 months, and the median follow-up for survivors was 24 months (range: 17 to 60 months). There were significant positive correlations of transcription levels between S100A8 and S100A9 in AML patients from different stages. The expression levels of S100A8 and S100A9 in newly diagnosed and relapsed AML patients revealed no significant difference, but were both lower than those in complete remission and control group. Patients with high transcription level of S100A8 and S100A9 were predominantly in AML with myelo-monocytic differentiation (M4, M5) whereas those with low transcription level of S100A8 and S100A9 often showed more immature cytomorphology (M0, M1), erythrocytic or megakaryocytic differentiation. The subgroup of patient with high transcription level of S100A8 could be a predictor for inferior overall survival (OS) (P = 0.0012). High levels of transcription for both S100A8 and S100A9 in de novo AML patients could predict shorter OS than those with low levels after adjustment on their ages at diagnosis (P = 0.003). In a multivariate analysis for OS, high S100A8 transcription was a significant prognostic factor (P =0.001) after analysis adjustment for age (P = 0.019), bone marrow blast percentage (P = 0.04) and cytogenetic classification (P = 0.05) at diagnosis. Using a combination of S100A8 transcription level and cytogenetic risk classification, survival analysis gave result that the new stratification was highly correlated with the OS (P < 0.0001). With significantly different OS, patients from the intermediate-risk group can be divided into two subgroups (IH = cytogenetically intermediate-risk with S100A8 high transcription and IL = cytogenetically intermediate-risk with S100A8 low transcription). Patients from group IL emerged with a probability of OS similar to the cytogenetically favorable-risk group, whereas the survival curve of IH subgroup was close to the unfavorable-risk group. (Figure)FigureRisk stratification of de novo AML patients by a combination of age and cytogenetic characteristics with S100A8 expression levels. 1H = cytogenetically favorable-risk with S100A8 high expression, 1L = cytogenetically favorable-risk with S100A8 low expression, 2H = cytogenetically intermediate-risk with S100A8 high expression, 2L = cytogenetically intermediate-risk with S100A8 low expression, 3H = cytogenetically unfavorable-risk with S100A8 high expression, 3L = cytogenetically unfavorable-risk with S100A8 low expression.Figure. Risk stratification of de novo AML patients by a combination of age and cytogenetic characteristics with S100A8 expression levels. 1H = cytogenetically favorable-risk with S100A8 high expression, 1L = cytogenetically favorable-risk with S100A8 low expression, 2H = cytogenetically intermediate-risk with S100A8 high expression, 2L = cytogenetically intermediate-risk with S100A8 low expression, 3H = cytogenetically unfavorable-risk with S100A8 high expression, 3L = cytogenetically unfavorable-risk with S100A8 low expression. In conclusion, the transcription levels of S100A8 and S100A9 were significantly associated with development and prognosis of AML. Both S100A8 and S100A9 expression levels provided useful clinical information, and more importantly, S100A8 expression level significantly correlates with prognosis in addition to well-known cytogenetic risk factors, and could potentially further refine current stratification of de novo AML patients. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2804-2804
Author(s):  
Guillaume Richard-Carpentier ◽  
Miriam Marquis ◽  
Guy Sauvageau ◽  
Josee Hebert

Abstract Introduction: Acute myeloid leukemia (AML) is a heterogeneous disease with variable responses to therapy and clinical outcomes. Cytogenetics and molecular analyses help to stratify patients and to select therapy, especially regarding indication of hematopoietic stem cell transplant (HSCT) after achieving complete remission (CR). Patients in the intermediate cytogenetic risk category (~40%) represent a clinical dilemma regarding consolidation because of the high rate of relapse with chemotherapy alone and high rate of morbidity/mortality with HSCT. Consequently, we aimed to identify new prognostic markers to refine the risk stratification of this patients' subgroup and to identify which patients are most likely to benefit from HSCT. Methods: We analyzed RNA sequencing data of 263 specimens from patients with de novo AML treated with curative intent including 165 patients with intermediate risk cytogenetics. Data from 24 586 genes were normalized as RPKM values with logarithmic transformation and standardization. Cox proportional hazard models were used to assess the prognostic impact of gene expression (GE) on overall survival (OS) and relapse-free survival (RFS). We performed univariate analyses (UVA) and multivariate analyses (MVA) adjusted for age and white blood cell count (WBC) at diagnosis, mutations in NPM1, FLT3, CEBPA, RUNX1, ASXL1, TP53 and DNMT3A and HSCT as a time-dependent (TD) covariate. Interaction between GE and TD-HSCT was tested in MVA for OS and RFS. Genes with a significant interaction between GE and TD-HSCT (p < 0.10) were retained for further analyses. GE of candidate markers were dichotomized using a bioinformatic method assessing hazard ratios (HR) and p values for all potential cut-offs to identify the most optimal threshold. The markers were finally reassessed as dichotomic variables for association with covariates, CR rates, RFS and OS. All statistical tests were two-sided with p values < 0.05 considered significant. Results: We identified SPAG1 (Sperm Associated Antigen 1) as the gene with the highest HR for OS and RFS in the intermediate cytogenetic risk group. SPAG1 expression was dichotomized on the median RPKM value in the global cohort of 263 de novo AML specimens (RPKM cut-off 2.06). Using this cut-off, 79 patients had low expression of SPAG1 and 86 patients had high expression of SPAG1 in the intermediate cytogenetic risk cohort. Median age, sex, WBC at diagnosis and HSCT in CR1 rates were similar between the two groups. Patients with high expression of SPAG1 had a higher frequency of FLT3-ITD (51.2% vs 32.9%, p = 0.02) and DNMT3A mutations (51.2% vs 32.9%, p = 0.02). SPAG1-high patients were enriched in the NPM1/FLT3-ITD/DNMT3A triple positive mutation population (SPAG1-high 24/33 vs SPAG1-low 9/33, OR 3.00, p = 0.01). The frequencies of all other analyzed mutations were similar between both groups. CR rates did not differ between the two groups (SPAG1-high 77.9% vs SPAG1-low 79.7%, p = 0.77). In UVA with censorship at time of HSCT, SPAG1-high patients had worse OS (5-year estimates 14.2% vs 28.1%, HR 1.75, 95% CI 1.16-2.63, p < 0.01) and RFS (5-year estimates 9.3% vs 27.1%, HR 1.90, 95% CI 1.20-3.01, p < 0.01) (Figure 1). In MVA with censorship at time of HSCT, high expression of SPAG1 remained significantly associated with OS (HR 1.78, 95% CI 1.12-2.83, p = 0.01) and RFS (HR 2.34, 95% CI 1.38-3.96, p < 0.01). Furthermore, there was a significant interaction between SPAG1 GE and TD-HSCT (p = 0.09) in the RFS model. Importantly, SPAG1 had a lower prognostic impact for RFS in the model including TD-HSCT (HR 1.65, 95% CI 1.07-2.55, p = 0.02) compared with the model in which survival was censored at time of HSCT (HR 2.34, p < 0.01). High SPAG1 expression was also associated with worse OS in the TCGA AML dataset which is enriched in intermediate cytogenetic risk samples (p < 0.001). Conclusion: In patients with intermediate cytogenetic risk AML, high expression of SPAG1 is independently associated with worse OS and RFS. The prognostic impact of SPAG1 expression on RFS is lower when adjusted for TD-HSCT indicating that the adverse prognosis conferred by high expression of this gene may be partially overcome by HSCT in CR1. Consequently, SPAG1 expression might help identify AML patients with intermediate cytogenetic risk who are most likely to benefit from HSCT in CR1. These results need to be validated in other independent cohorts and prospective studies before implementation into clinics. Disclosures Sauvageau: ExCellThera: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1002-1002
Author(s):  
Tung-Liang Lin ◽  
Lee-Yung Shih ◽  
Der-Cherng Liang ◽  
Chein-Fuang Huang ◽  
Chia-Hui Chang ◽  
...  

Abstract Abstract 1002 Poster Board I-24 Background and purpose: Overexpression of BAALC, MN1, or ERG gene has been described to have adverse impact on the outcome of acute myeloid leukemia (AML) with normal karyotype. The majority of patients with partial tandem duplication of MLL gene (MLL-PTD) had normal karyotypes. The prognostic relevance of overexpression of these genes in MLL-PTD AML was not clear. Aims: We aimed to (1) measure the mRNA expression levels of FLT3, BAALC, FHIT, MN1, and ERG genes in AML patients with MLL-PTD (2) compare the expression levels of these genes with normal controls, and (3) determine their prognostic significance. Patients and methods: Bone marrow samples from 93 de novo AML patients with MLL-PTD at diagnosis were analyzed. MLL-PTD was screened by Southern blot analysis or reverse transcriptase polymerase chain reaction (RT-PCR) then confirmed by real-time quantitative PCR (RQ-PCR). RQ-PCR assay with TaqMan probe was performed to measure the expression of FLT3, BAALC, FHIT, MN1, and ERG genes in MLL-PTD AML as well as in 34 normal controls for comparison. The expression levels of target genes were calculated as the copy number of each gene normalized to the copy number of ABL control gene (NCN). Positive and negative controls as well as standard curve constructs were included in each assay. Mutational analysis was performed by DNA/cDNA PCR followed by GeneScan analysis for detection of internal tandem duplication of FLT3 gene (FLT3/ITD). The expression levels of each target genes were dichotomized at the median value to low and high expression groups. The event-free and overall survivals (EFS and OS) were compared between the 2 groups. Results: The expression levels of mRNAs for FLT3, BAALC, FHIT, MN1, and ERG genes at diagnosis in MLL-PTD AML and 34 normal controls are shown in Table. MLL-PTD patients had significantly higher expression levels of FLT3, BAALC, MN1, and ERG compared to normal controls. The expression of FHIT was also higher than that of controls, but did not reach statistic significance. FLT3/ITD was present in 26 of 52 patients (50%). The expression levels of the above genes were not different between patients with FLT3/ITD and those without. The median age of the entire cohort was 56 years. The median EFS and OS of the 52 patients who received standard induction chemotherapy were 5.8 and 11.4 months, respectively. The complete remission (CR) rate was higher in the low expression group than that of high expression group for BAALC (P = 0.011). The CR rate was not significantly different between low and high expression groups for FLT3, FHIT, MN1, or ERG, and between FLT3/ITD(+) and (-) groups. There were no significant difference in EFS or OS between patients with FLT3/ITD and those without. Patients with high expression of BAALC had a significantly shorter survival than those with low expression group; the median EFS was 10.3 mons (95% CI: 5.9-14.7 mons) vs. 0 mon, P = 0.044 and the median OS was 16.4 mons (95% CI: 8.3-25.5 mons) vs. 10.9 mons (95% CI: 6.5-15.3 mons), P = 0.031. Patients with high expression of MN1 also had a poor outcome compared with low expression group; the median EFS was 10.9 mons (95% CI: 0-28.3 mons) vs. 4.1 mons (95% CI: 0-11.7mons), P = 0.002 and the median OS was 29.7 mons (95% CI: 0-70.7mons) vs.11.0 mons (95% CI: 10.7-11.3 mons), P = 0.024. The EFS and OS were not significantly different between low and high expression groups for FLT3, BAALC, FHIT, and ERG. Conclusions: Our results showed that MLL-PTD was associated with overexpression of FLT3, BAALC, MN1, and ERG. The patients with lower expression level of BAALC had a higher CR rate and patients with overexpression of BAALC or MN1 had poor EFS and OS. FLT3/ITD had no prognostic impact. Supported by grants NSC97-2314-B-182 -011-MY3, NSC96-2314-B-195-006-MY3, and MMH-E-96009. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4396-4396
Author(s):  
Ingo Tamm ◽  
Stephan Richter ◽  
Doreen Oltersdorf ◽  
Ursula Creutzig ◽  
Jochen Harbott ◽  
...  

Abstract Apoptosis-related proteins are important molecules for predicting chemotherapy response and prognosis in adult acute myeloid leukemia (AML). However, data on the expression and prognostic impact of these molecules in childhood AML are rare. Using flow cytometry and western blot analysis, we therefore investigated 45 leukemic cell samples of children with de novo AML enrolled and treated within the German AML-BFM93 study for the expression of apoptosis-regulating proteins (CD95, Bcl-2, Bax, Bcl-xL, Procaspase-3, XIAP, cIAP-1, Survivin). XIAP (p&lt;0.002) but no other apoptosis regulators showed maturation-dependent expression differences as determined by FAB morphology with the highest expression levels observed within the immature M0/1 subtypes. XIAP (p&lt;0.01) and Bcl-xL (p&lt;0.01) expression was lower in patients with favorable than intermediate/poor cytogenetics. After a mean follow-up of 34 months, a shorter overall survival was associated with high expression levels of XIAP {30 (n=10) vs. 41 months (n=34); p&lt;0.05} and Survivin {27 (n=10) vs. 41 months (n=34); p&lt;0.05}. We conclude that apoptosis-related molecules are associated with maturation stage, cytogenetic risk groups and therapy outcome in childhood de novo AML. The observed association of XIAP with immature FAB types, intermediate/poor cytogenetics and poor overall survival should be confirmed within prospective pediatric AML trials.


2009 ◽  
Vol 27 (24) ◽  
pp. 4007-4013 ◽  
Author(s):  
Ichiro Tsukimoto ◽  
Akio Tawa ◽  
Keizo Horibe ◽  
Ken Tabuchi ◽  
Hisato Kigasawa ◽  
...  

Purpose To improve the prognosis in children with newly diagnosed acute myeloid leukemia (AML) by introducing a dose-dense intensive chemotherapy regimen and an appropriate risk stratification system. Patients and Methods Two hundred forty children with de novo AML were treated with continuous cytarabine-based induction therapy and stratified to three risk groups based on the initial treatment response, age, and WBC at diagnosis and cytogenetics. All of the patients were treated with intensive consolidation chemotherapy including three or four courses of high-dose cytarabine. Allogeneic hematopoietic stem-cell transplantation (HSCT) was indicated for only the intermediate-risk patients with matched related donors and for all the high-risk subsets. Results Two hundred twenty-seven children (94.6%) achieved a complete remission (CR). Four children demonstrated induction death. The median follow-up of the live patients was 55 months (range, 37 to 73 months). The 5-year overall survival of all 240 children was 75.6% (95% CI, 70.3% to 81.4%) and event-free survival was 61.6% (95% CI, 55.8% to 68.1%). The 5-year disease-free survival in each risk group were 71.3% (95% CI, 63.4% to 80.2%) in the low-risk group (n = 112), 59.8% (95% CI, 50.6% to 70.7%) in the intermediate-risk group (n = 92), and 56.5% (95% CI, 39.5% to 80.9%) in the high-risk group (n = 23). Eight children died during the first CR, including four after HSCT. Conclusion A high survival rate, 75.6% at 5 years, was achieved for childhood with de novo AML in the AML99 trial. The treatment strategy was well tolerated with only 1.7% induction death rate and 3.5% remission death rate. Low-risk children were successfully treated with chemotherapy alone.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7007-7007
Author(s):  
Jessica K. Altman ◽  
Jamie Koprivnikar ◽  
James K. McCloskey ◽  
Vamsi Kota ◽  
Olga Frankfurt ◽  
...  

7007 Background: Aspacytarabine (BST-236) is a prodrug of cytarabine, the backbone of acute myeloid leukemia (AML) standard of care chemotherapy, associated with toxicity which precludes its administration in older patients and patients with comorbidities. Aspacytarabine is inactive in its intact prodrug form until cytarabine is gradually released at pharmacokinetics which decrease the systemic exposure to peak toxic cytarabine levels, resulting in reduced systemic toxicity and relative sparing of normal tissues, enabling therapy with high cytarabine doses to patients otherwise unfit to receive it. Methods: A phase 2b open-label, single-arm study to evaluate the efficacy and safety of aspacytarabine as a first-line single-agent therapy in newly-diagnosed AML patients unfit for standard chemotherapy (NCT03435848). Aspacytarabine is administrated at 4.5 g/m2/d (containing 3 g/m2/d cytarabine) in 1-2 induction and 1-3 consolidation courses, each consisting of 6 daily 1-hour infusions. Patients with secondary AML, prior hypomethylating agent (HMA) therapy, and therapy-related AML, are eligible. Results: To date, in the ongoing study, 46 newly-diagnosed AML patients unfit for standard chemotherapy (median age 75 years) were treated with aspacytarabine and completed 1-4 courses of 4.5 g/m2/d aspacytarabine, including 26 patients (63%) with de novo AML and 17 (37%) with secondary AML. Six patients (13%) were previously treated with HMA (median 12 courses). The baseline median bone marrow blasts was 52%, and 54% and 29% of patients had adverse or intermediate European LeukemiaNet (ELN) score, respectively. Twenty (43%) patients had ECOG 2. Aspacytarabine is safe and well-tolerated in repeated-course administration. Grade > 2 drug-related adverse events include mainly hematological events and infections. The 30-day mortality rate is 11%. Of 43 patients evaluable for efficacy analysis to date, 15 patients (35%) reached a complete remission (CR) following 1 (13 patients) or 2 (2 patients) induction courses, all with complete hematological recovery (median 27.5 days, range 22-39 days). The CR rates in de novo AML patients and patients with adverse ELN score are 46% and 33%, respectively. Of the 11 patients evaluable to date for minimal residual disease (MRD) flow cytometry test, 8 are MRD negative (73%). While aspacytarabine treatment consists of a limited number of courses, median duration of response and median overall survival for responders are not reached at 12 and 24 months, respectively (end of follow up). Updated results will be presented at the meeting. Conclusions: The cumulative clinical data suggest that aspacytarabine, a time-limited single-agent treatment, is safe and efficacious as a first-line therapy for patients who are unfit for intensive chemotherapy, which may establish it as a new tolerable AML chemotherapy backbone. Clinical trial information: NCT03435848.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4870-4870
Author(s):  
Marta I Pereira ◽  
Ana I Espadana ◽  
Emília Cortesão ◽  
Gilberto P Marques ◽  
Catarina Geraldes ◽  
...  

Abstract Abstract 4870 Background: Dendritic cells (DC) are a heterogeneous population of lineage-negative antigen-presenting cells derived from CD34+ hematopoietic progenitors, present in tissue, blood and bone marrow (BM), where plasmacytoid DC (pDC) are a normal finding, representing 0.2 ± 0.1% of cell populations (Matarraz et al, 2010). DC neoplasms include solid tumors (such as DC sarcomas) and an entity classified by the World Health Organization (2008) as an acute myeloid leukemia (AML)-related precursor neoplasm: blastic pDC neoplasm/leukemia, an aggressive disease with poor prognosis, with no clinical trials to orient consensus regarding the most effective treatment; it is usually chemo-resistant, although some cases respond to AML-like regimens and allogeneic hematopoietic stem cell transplant. It is not clear if the presence of an increased DC population in non-DC AML confers pDC neoplasm-like biological characteristics to the former. Aims: This study aims to evaluate whether an increase in the size of DC populations in newly-diagnosed non-DC AML affects the latter's biological behavior, as represented by the overall survival (OS) of patients with the disease. Methods: We reviewed all AML diagnosed in our Hospital between January 1st 2008 and December 31st 2010, identifying 146 patients. We excluded 9 patients who had no flow cytometry immunophenotyping (IP) performed, and 7 whose first IP was performed after treatment was instituted. In that time frame, we also diagnosed 4 pDC neoplasms. Of the 130 patients included, 91 had their presenting IP performed on BM aspirate, while the remaining 39 were phenotyped on blood samples. The size of the DC populations and blastic DC maturation were determined on these samples. Patients were classified into 2 groups according to the size of the DC component; one (the Non-DC Group) had a DC component of up to 0.3% (in practice, the highest value in this group was 0.2%); the other (DC Group) had a percentage over this limit (the lowest value being 1.0%). OS data was determined for both groups; special consideration was given to age strata, separating patients under 65 years of age (Under-65) from those 65 or older (Over-65) and etiology (distinguishing de novo AML from AML secondary to therapy, myelodysplasia or myeloproliferative diseases). The percentage of DC identified by IP did not influence nor alter the type of treatment instituted. Results: We found that the presence of a DC component above the normal BM interval (as determined by Matarraz et al) was associated with a significantly decreased OS, with patients with DC components over 0.3% presenting with a median OS of 2.4 months (mean: 6.4 ± 1.6) and those with a component under 0.3% with a median OS of 8.6 months (mean: 17.0 ± 1.9) (p = 0.033). In our series, patients Over-65 had a median OS of 2.9 months (mean = 6.9 ± 1.0) and those Under-65 a median of 21.3 months (mean = 22.5 ± 2.5), p < 0.001. The differences in OS according to DC component were attenuated in patients Over-65 (median = 1.8 vs. 3.9 months, p = NS), whereas in patients Under-65 the median survival was 2.7 months (mean: 8.7 ± 2.9) for the DC Group and 24.4 months (mean: 24.3 ± 2.7) for the non-DC Group (p = 0.035). The differences in OS were also significant for de novo AML (median = 2.4 vs. 16.0 months, mean = 4.7 ± 1.9 vs. 20.5 ± 2.6, p = 0.017), but not statistically relevant for secondary AML (median = 4.4 vs. 5.5 months, mean = 8.4 vs. 10.8, p = NS). Discussion: In this study, we found that an increase in the size of the DC component as determined by IP at diagnosis on newly-diagnosed AML had a negative impact on prognosis, with a significant decrease in median and mean OS in patients with a percentage of DC over the upper limit of the normal interval. We also determined that the decreased survival was primarily attributed to the better-prognosis groups (patients under 65 and with de novo AML), whereas the effect of the worsened prognosis was attenuated in those patients with a bad prognosis at the outset (patients over 65 and with secondary AML). If data from DC neoplasms could be extrapolated, we could suggest that AML with increased DC components are less chemo-sensitive, which would explain the OS differences found in the Under-65 group, as well as the no-difference found in the Over-65 Group, which is frequently undertreated due to comorbidities. Conclusion: Our study suggests that the size of the DC component at diagnosis as determined by IP is a new prognostic marker predictive of decreased survival. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2582-2582 ◽  
Author(s):  
Frauke Bellos ◽  
Bruce H. Davis ◽  
Naomi B. Culp ◽  
Birgitte Booij ◽  
Susanne Schnittger ◽  
...  

Abstract Background Nucleoside analogs depend on cellular hENT1 expression for entry into cells and cytotoxic activity. Studies suggest low cellular hENT1 levels correlate with poor response to such chemotherapies in solid tumors, data on AML and MDS is scarce. Aim To examine hENT1 expression by multiparameter flow cytometry (MFC) in newly diagnosed AML and MDS and correlate results to morphologic, cytogenetic (CG) and molecular genetic (MG) findings. To examine hENT1 expression with respect to clinical outcome in AML patients (pts) treated with intensive cytarabine-based chemotherapy (CHT). Methods We studied pts with newly diagnosed AML (n=145) and MDS (n=96), 133/108 male/female, median age 67.3 (AML) and 73.3 years (MDS). CG was done in 130 AML and 86 MDS. Pts included 107 de novo AML, 9 t-AML, 29 s-AML; FAB: 9 M0, 27 M1, 50 M2, 9 M3, 21 M4, 8 M4eo, 7 M5, 14 not classified; by CG (MRC): 21 favorable, 75 intermediate, 34 adverse. 91 were de novo MDS, 5 t-MDS; 1 RARS, 17 RCMD-RS, 37 RCMD, 3 5q- syndrome, 3 RAEB-1, 5 RAEB-2, 1 CMML, 24 not classified; 2 IPSS-R very low, 55 IPSS-R low, 8 IPSS-R intermediate, 8 IPSS-R high, 13 IPSS-R very high. hENT1 expression was quantified by a novel four color intracellular staining assay using monoclonal antibodies against hENT1, CD45, CD64 and myeloperoxidase. Median fluorescence intensities (MFI) of hENT1 were determined in myeloid progenitors (MP), granulocytes (G) and monocytic cells (Mo) and correlated to hENT1 MFI in lymphocytes to derive hENT1 index (index). Results No correlation of index to age, gender, hemoglobin level or counts for blasts, WBC or platelets was detected. In AML, we generally saw higher index by trend in the more favorable prognostic subgroups. M3/t(15;17)/PML-RARA+ displayed higher index in MP than non-M3 AML (4.24 vs 2.56, p<0.001). G index was lower in M0 (3.01) vs M1, M2, M4 and M4eo (5.66, 4.34, 5.35, 4.77; p=0.01, 0.028, 0.004, 0.043, respectively) and in M2 compared to M1 and M4 (4.34. vs 5.66 and 5.35, p=0.01 and 0.033, respectively). M2 showed lower MP index than M5 (2.42 vs 2.99, p=0.016). Considering CG, index in MP was higher in favorable vs intermediate and adverse pts (3.05 vs 2.58 and 2.53, p=0.034 and 0.023, respectively), Mo index was higher ín favorable vs adverse pts (3.17 vs 2.71, p=0.044). By MG, higher index in Mo and G was observed in RUNX1-RUNX1T1+ AML (4/83, 4.32 vs 3.04, p=0.01; 8.16 vs 4.60, p=0.002, respectively). Higher index for MP was found in FLT3-ITD mutated (mut) (18/111; 3.19 vs 2.62, p=0.012), CEPBA mut (4/26, 3.15 vs 2.35, p=0.004) and for Mo in NPM1 mut AML (23/104; 3.72 vs 2.84, p=0.02), whereas lower index for MP was found in RUNX1mut pts (13/65; 2.17 vs 2.59, p=0.031). De novo AML displayed higher MP index than s-AML (2.7 vs 2.28, p=0.008). Using lowest quartile of index for MP (2.1185) as cut-off, AML pts in the MRC intermediate group treated with CHT (n=38) had inferior OS if MP index was below vs above this cut-off (OS at 6 months 63% vs. 95%, p=0.017, median follow up 4.6 months). MDS showed lower Mo and MP index than AML (2.68 vs 2.96, p=0.021, 1.84 vs 2.65, p<0.001, respectively). By IPSS-R, significance was reached for higher index in Mo and MP in very low risk compared to low risk pts (3.39 vs 2.54, p=0.013 and 4.07 vs 1.78, p<0.001, respectively), MP in very low compared to intermediate and high risk pts (4.07 vs 1.95, p=0.004; 4.07 vs 1.76, p=0.002), and MP and G in very low vs very high risk pts (4.07 vs 1.71, p=0.005; 5.86 vs 3.85, p=0.001, respectively). IPSS-R intermediate vs poor and very poor showed lower G index (5.47 vs 3.59, p=0.018 and vs 3.85, p=0.034 respectively). Conclusion AML with genetic and molecular genetic good risk profile had higher hENT1 expression in MP, G and Mo, suggesting a causal mechanism for better response to CHT and better outcome. Consequently, AML with poor risk molecular genetics (RUNX1 mut) showed lower levels of hENT1 in MP. The detection of higher levels in FLT3-ITD mut pts is in line with reportedly good response to CHT, overall worse outcome being mostly due to early relapses. Strikingly, we saw differences in outcome in pts treated with CHT according to hENT1 expression with shorter OS in pts with low index for MP. Higher index in de novo AML than s-AML and MDS may be causal for better response to nucleoside-based CHT in de novo AML. Data for MDS may be interpreted accordingly, lower risk cases showing higher index in MP, G and Mo. Further analyses are needed to explore hENT1 expression in AML and MDS more comprehensively. Disclosures: Bellos: MLL Munich Leukemia Laboratory: Employment. Davis:Trillium Diagnostics, LLC: Equity Ownership. Culp:Trillium Diagnostics, LLC: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1492-1492
Author(s):  
Guadalupe Oñate ◽  
Ana Garrido ◽  
Jordi Esteve ◽  
Rosa Coll ◽  
Montserrat Arnan Sangerman ◽  
...  

Abstract Introduction The association of NPM1mut and FLT3-ITD in de novo acute myeloid leukemia (AML) with intermediate-risk cytogenetics has different prognostic impact depending on the FLT3 allelic burden. Previous studies published by our cooperative group showed that patients with de novo AML of intermediate-risk cytogenetics with NPM1mut and FLT3-ITD low ratio (<0.5, FLT3low) at diagnosis presented an overall survival and relapse rate similar to those with NPM1mut and FLT3wt. Therefore, in the CETLAM-2012 protocol, patients with FLT3low NPM1mut AML are not considered for allogenic hematopoietic stem cell transplant (allo-HSCT) in first complete remission (CR1). Recent studies suggest that the co-occurrence of DNMT3A mutation in FLT3-ITD NPM1mut AML patients confers a worse prognosis regardless of FLT3-ITD ratio. We analysed our data to determine whether these findings were confirmed in our cohort, specifically in the low FLT3-ITD ratio patients, since this could have therapeutic implications. Methods and patients A total of 163 patients with de novo AML, intermediate-risk cytogenetics and NPM1mut were analysed (median age 53 years (18-72); male:female 72:91 (0.79)). Eighty patients (49%) harboured an FLT3-ITD, with a high allelic ratio in 42 of 76 patients with available ITD/wt ratio (55%). They were included in the AML-2003 (n=49) and AML-2012 (n=114) CETLAM protocols. Proportion of patients undergoing alloHSCT in CR1 is detailed in table 1. Bone marrow samples from diagnosis were studied for DNMT3A mutations as previously described. The definition of complete remission (CR), overall survival (OS), leukemia-free survival (LFS) and risk of relapse (RR) followed recommended ELN criteria. The Kaplan-Meier method was used to estimate the distribution of LFS and OS, for RR cumulative incidence was used. Results Out of the 163 patients with AML of intermediate risk cytogenetics and NPM1mut, 78 presented DNMT3A mutations (48%). Of these, 62 (79%) presented mutations in codon R882 or corresponded to DNA insertions/deletions while 16 (21%) harboured missense mutations. Presence of DNMT3A mutation did not associate with FLT3-ITD (ITD/85 DNMT3Awt vs ITD/78 DNMT3Amut, p=0.394). In the entire cohort, 5-year OS, LFS and RR were 58±4.5%, 59±4.6% and 27±13.9%. FLT3-ITD ratio confirmed its prognostic impact when analysing FLT3wt (n=83) vs FLT3low (n=34) vs FLT3high (n=42) patients (5-year OS of 68±6% vs 62±8.7% vs 37±8.6%; p=0.002; and 5-year RR of 18±9.4% vs 27±16.1% vs 41±23.2%; p=0.023). On the contrary, DNMT3Amut did not exert any effect on overall outcome (5-yr OS DNMT3Awt vs DNMT3Amut 61±6.2% vs 55±6.2%; p=0.234) When DNTM3A mutational status was considered, the impact of FLT3-ITD on outcome was mitigated in wild-type DNMT3A population. Thus, we found that DNMT3Awt patients presented no statistical differences in OS according to FLT3 mutational status or ratio: FLT3wt (n=46) vs FLT3-ITD (n=39) was 67±8.5% vs 57±8.2%; p=0.122, whereas FLT3wt (n=46) vs FLT3low (n=18) vs. FLT3high (n=19) was 67±8.5% vs. 66±11.5% vs 46±11.8%; p=0.088 (image 1A).This was also seen in relation to LFS and RR according to FLT3 ratio: 5-yr LFS of FLT3wt vs FLT3low vs FLT3high was 72±7.9% vs 61±12.6% vs 51±13.4%; p=0.244 and 5-year RR of the same groups: 19±8.8% vs 26±12.5% vs 27±21.9%; p=0.724 (image 2A). In the DNMT3Amut group, patients with FLT3-ITD (n=41) presented shorter OS than those with FLT3wt (n=37) with an OS of 37±10.7% vs 69±7.8%; p=0.028. When FLT3 ratio was considered, FLT3wt (n=37) vs FLT3low (n=16) vs FLT3high (n=23) showed an OS of 69±7.8% vs. 58±13.2% vs 27±13.1%; p=0.038 (image 1B). Similar results were seen in LFS according to FLT3 ratio (FLT3wt (n=29) vs FLT3low (n=16) vs FLT3high (n=20) 71±8.6% vs 53±12.9% vs 18±13.8%; p=0.012). Finally, we observed significant differences in the 5-year RR when considering DNMT3Amut patients in relation to FLT3 ratio (FLT3wt vs FLT3low vs FLT3high 18±10.6% vs 27±20% vs 54±28.8%; p=0.021)(image 2B). Conclusions In this study, patients with NPM1mut and FLT3-ITDlow presented a similar outcome to patients with NPM1mut and FLT3wt regardless of DNMT3A mutational status. These results support the modification of alloHCST policy in CR1 in CETLAM-2012, which do not consider alloHSCT for patients with FLT3low. On the other hand, concurrence of DNMT3A mutation may have an added negative effect in patients with NPM1mut and FLT3-ITDhigh, which should be further confirmed in larger studies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 99-99
Author(s):  
Timothy J Ley ◽  
Li Ding ◽  
Matthew J. Walter ◽  
Michael D. McLellan ◽  
Tamara Lamprecht ◽  
...  

Abstract Abstract 99 Whole genome sequencing with next generation technologies represents a new, unbiased approach for discovering somatic variations in cancer genomes. Our group recently reported the DNA sequence and analysis of the genomes of two patients with normal karyotype acute myeloid leukemia (AML). Improvements in next generation sequencing technologies (principally, paired-end sequencing) led us to reevaluate the first case (Ley et al, Nature 456:66–72, 2008) with deeper sequence coverage. We discovered a novel frameshift mutation in DNMT3A, one of the three genes in humans (DNMT1, DNMT3A, and DNMT3B) that encodes a DNA methyltransferase that catalyzes the addition of methyl groups to cytosine within CpG dinucleotides. We then sequenced all the coding exons of this gene in 280 additional de novo cases of AML to define recurring mutations. 62/281 de novo AML cases (22%) had mutations with translational effects in the DNMT3A gene. 18 different missense mutations were identified, the most common of which was at amino acid R882 (37 cases). Frameshifts (n=6), nonsense mutations (n=6), splice site mutations (n=3), and a 1.5 Mbp deletion that included the DNMT3A gene were also identified. DNMT3A mutations were highly enriched in cases with intermediate risk cytogenetics (56/166=33.7%; p<0.0001) and were not found in any cases with favorable cytogenetics (0/79; p<0.0001). Genomic 5-methylcytosine content, the general pattern of CpG island methylation, and gene expression patterns were essentially unaltered in genomes with DNMT3A mutations. The median overall survival of all AML patients with DNMT3A mutations was strikingly reduced, regardless of whether the mutation was at R882 or any other site (12.3 vs. 41.1 months, p<0.0001, Figure A). Patients with a FLT3 ITD mutation and no DNMT3A mutation (n=39) had a median survival of 33.5 months, but patients with a FLT3 ITD mutation and any DNMT3A mutation (n=18) had a median survival of 7.7 months (p=0.003, Figure B). Finally, DNMT3A mutation status independently predicted poor outcomes in a Cox Proportional Hazards analysis. In sum, DNMT3A mutations are highly recurrent in de novo AML cases with intermediate risk cytogenetics, and are independently associated with poor survival. These mutations may be valuable for identifying patients who need early intensification of therapy (allogeneic stem cell transplantation and/or innovative early phase clinical trials in first remission or consolidation). Disclosures: Westervelt: Novartis: Honoraria; Celgene: Honoraria, Speakers Bureau. DiPersio:Genzyme: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1362-1362
Author(s):  
Isabelle Bartram ◽  
Nicola Gökbuget ◽  
Cornelia Schlee ◽  
Sandra Heesch ◽  
Lars Fransecky ◽  
...  

Abstract Introduction Although risk stratification, detection of minimal residual disease (MRD) and implementation of novel therapeutic agents have improved outcome in acute lymphoblastic leukemia (ALL), survival in adult T-ALL patients still remains unsatisfactory. Therefore, new prognostic markers and potential therapeutic targets are warranted. BCL11B, a key player in normal T-cell development, has recently gained interest due to its high mutation rate (9-16%) in T-ALL. We investigated the frequency of BCL11B mutations, expression levels and the prognostic value in a large uniformly treated cohort of adult T-ALL. Patients and methods We analyzed bone marrow (BM) samples of 201 adult T-ALL patients sent to the reference laboratory of the German Multicenter Study Group for Adult ALL (GMALL). BCL11B expression was determined in 195 patients by qRT-PCR, BCL11B mutations were assessed in 178 patients by Sanger sequencing of exon 4 (including all 6 zink finger [ZF] domains). Low expression of BCL11B was defined by expression levels in the lowest quartile (BCL11Blow), high expression by levels in the three remaining quartiles (BCL11Bhigh). Samples had previously been characterized for expression of BAALC, IGFBP7, MN1, WT1, GATA3, ERG as well as for the mutations status of NOTCH1, WT1, and TCR rearrangements. Clinical data were available for 169 patients enrolled on the GMALL trials. We generated BCL11B associated gene expression profiles (GEP) derived from an independent set of 86 T-ALL patients enrolled in the Microarrays Innovations in LEukemia multicenter study. Results BCL11B was aberrantly expressed in adult T-ALL with significantly higher expression levels in thymic compared to early T-ALL (0.6 vs. 0.3, P=0.01). Expression of genes associated with a prognostic impact (BAALC, IGFBP7, ERG) or/and T-cell stage dependent expression profile (GATA3, IGFBP7) showed that BCL11Blow (n=49) had higher MN1 (1.6 vs, 0.3, P=0.01), IGFBP7 (1.3 vs. 0.5, P=0.02), and lower GATA3 expression (2.1 vs. 5.7, P<0.01) compared to BCL11Bhigh patients (n=146). This maturation stage specific expression of BCL11B was stressed by a higher rate of TCR rearrangement in BCL11Bhigh patients (73% vs. 27%, P=0.005) and further underlined by the BCL11B derived GEP linking low BCL11B to an immature molecular signature characterized by high expression of BAALC, IGFBP7, FLT3, CD34. Regarding clinical characteristics, low BCL11B expression was associated with a poor prognosis (5-year overall survival (OS): low 35% (n=40) vs. high 53% (n=129), P=0.02) in the overall T-ALL cohort. In the standard risk group of thymic T-ALL (n=102), BCL11Blow identified patients with an unexpected poor outcome (5-year OS: 20%, n=18) compared to BCL11Bhigh (62%, n=84, P<0.001). In addition, BCL11Blow thymic T-ALL patients showed a lower remission rate (5 years: 38% vs. 72%, P=0.02). BCL11B mutations were found in 24 of the 178 (13.5 %) T-ALL patients. In 9 patients, mutations resulted in frame shifts, whereas the remaining, except for a single one, missense mutations were located in the ZF domains: three resulting in introduction of a stop codon. BCL11B mutations were enriched in the mature immunophenotype (thymic: 20%, mature: 8%, early: 3%, P=0.03). No differences were observed in mRNA levels for BAALC, IGFBP7, MN1, WT1, GATA3, ERG, but patients with BCL11B mutations were less frequently assigned to the BCL11Blow group compared to those with high expression (5% vs. 95%, P=0.02). Regarding the clinical characteristics, BCL11B mutations had no prognostic impact regarding OS, neither in the total T-ALL cohort (5-year OS: 56% vs. 48%, n.s.) nor in the thymic T-ALL subgroup (5-year OS: 65% vs. 51%, n.s). Conclusion Our data confirmingly show a high frequency of BCL11B mutations (13.5%) in the so far largest cohort of adult T-ALL patients. As loss of function mutations were restricted to functional ZF domains and recurrently occurred in thymic T-ALL, these data stress a potential pathogenetic role of BCL11B as T-cell specific transcription factor. Importantly, low expression was associated with poor prognosis; in particular in the standard risk group of thymic T-ALL, BCL11Blow is a novel marker that identifies patients with an unacceptable poor prognosis. These findings might help to improve risk stratification in a significant proportion of adult T-ALL patients, which fail to standard therapy despite the favourable immunophenotypic characteristics. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document