Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Proteasome Inhibitors

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4758-4758
Author(s):  
Barbara Muz ◽  
Feda Azab ◽  
Pilar De La Puente ◽  
Scott A Rollins ◽  
Richard Alvarez ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is a plasma cell malignancy localized in the bone marrow (BM). Despite the introduction of novel therapies more than 70% of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play a key role on proliferation of MM and that its inhibition with small-molecule inhibitors sensitized MM cells to therapy. However, these small molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. In this study, we tested inhibition of P-selectin and PSGL-1 using functionally blocking monoclonal antibodies to sensitize MM cells to therapy. Methods: The humanized monoclonal antibodies anti-P-selectin (SelG1) and anti-PSGL-1 (SelK2) were obtained from Selexys Pharmaceuticals. Endothelial cells, stromal cells derived from MM patients, and MM cell lines (MM1s, H929, OPM1 and RPMI8226) were used for in vitro expression, proliferation, apoptosis and immuno-blotting assays. The expression of P-selectin and PSGL-1 were tested by the interaction of SelG1 (5-20µg/mL) and SelK2 (5-20µg/mL) antibodies with endothelial cells, stromal cells and MM cells for 1hr, followed by addition of a secondary-FITC antibody and flow cytometry analysis. For adhesion assay, cells were treated with increasing concentrations of SelG1 and SelK2 for 1hr; pre-labeled MM cells were then applied to unlabeled endothelial or stromal cells for 1hr, non-adherent cells were washed, and adherent cells were analyzed by a fluorescent reader. For proliferation, MM1s-GFP+ cells cultured alone, with stroma, or with endothelial cells; and were treated with, or without, bortezomib and carfilzomib, in the presence, or absence, of SelG1 and SelK2 antibodies, and proliferation was determined by flow cytometry. Protein expression associated with survival, apoptosis and cell cycle signaling was analyzed by western blotting. For in vivo, MM1s-Luc-GFP cells were injected intravenously into SCID mice and tumor progression followed for 4 weeks. Anti-mouse-P-selectin antibody was used to inhibit P-selectin in the mouse endothelial cells and stroma. Likewise, SelK2 and anti-mouse PSGL-1 were used to inhibit PSGL-1 on human MM cells in the mouse microenvironment, respectively. Mice were divided into 6 groups (1) vehicle treated control, (2) anti-mouse-P-selectin (5mg/kg) alone, (3) SelK2 (5mg/kg) and anti-mouse-PSGL-1 (5mg/kg) alone, (4) bortezomib (0.5mg/kg) alone, (5) a combination of anti-mouse-P-selectin and bortezomib, and (6) a combination of SelK2 (5mg/kg), anti-mouse-PSGL-1 (5mg/kg) and bortezomib. Anti-mouse-P-selectin, anti-mouse–PSGL-1, SelK2 and bortezomib were administered intraperitoneally twice a week. Results: The half-life of SelG1 in a Phase I clinical study was previously shown to be 363 hours while the half-life of SelK2 in a primate study was approximately 100 hours. P-selectin expression was detected on endothelial and stromal cells using the SelG1 antibody, while no expression was found on MM cells. PSGL-1 was highly expressed on MM cells as well as on endothelial cells and stromal cells as detected by SelK2 monoclonal antibody. Inhibition of P-selectin and PSGL-1 with SelG1 or SelK2, respectively, decreased MM cell adhesion to endothelial and stromal cells, and decreased the proliferation of MM cells induced by stromal and endothelial cells. Similarly, inhibition of the interaction between P-selectin and PSGL-1 sensitized MM cells to bortezomib and carfilzomib in vitro. In vivo results demonstrated that inhibition of the P-selectin or PSGL-1 as single agents delay tumor growth compared to non-treated mice and that it enhances the effect of bortezomib. Conclusions: These results demonstrate that inhibition of P-selectin and PSGL-1 by SelG1 and SelK2 antibodies, respectively, disrupts the interaction between MM cells and BM microenvironment and decreases adhesion and proliferation of MM cells. Moreover, inhibition of P-selectin and PSGL-1 increased the sensitivity of MM cells to bortezomib and carfilzomib in vitro, and to bortezomib in vivo. These data provides a basis for future clinical trials for sensitization of refractory MM patients to therapy by inhibition of P-selectin and PSGL-1 using SelG1 and SelK2 monoclonal antibodies. Disclosures Rollins: Selexys: Employment. Alvarez:Selexys: Employment. Kawar:Selexys: Employment. Azab:Selexys: Research Funding.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Barbara Muz ◽  
Feda Azab ◽  
Pilar de la Puente ◽  
Scott Rollins ◽  
Richard Alvarez ◽  
...  

Multiple myeloma (MM) is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interactionin vivoled to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment.


2021 ◽  
Vol 9 (3) ◽  
pp. e001803
Author(s):  
Louise M E Müller ◽  
Gemma Migneco ◽  
Gina B Scott ◽  
Jenny Down ◽  
Sancha King ◽  
...  

BackgroundMultiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported.MethodsThis study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment.ResultsUsing the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes.ConclusionThese data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 514-520
Author(s):  
E Fritz ◽  
H Ludwig ◽  
W Scheithauer ◽  
H Sinzinger

Various defects in platelet function have been reported as being associated with multiple myeloma. In 30 myeloma patients and 15 healthy controls, we investigated platelet survival using in vitro labeling of autologous platelets with 111indium-oxine and measuring the in vivo kinetics of the radioisotope. Significantly shortened platelet half- life in patients averaged 73 hours, while platelet half-life in the healthy controls averaged 107 hours. In myeloma patients, serum levels of thromboxane B2, beta-thromboglobulin, and platelet factor 4 were significantly elevated; aggregation indices were within the pathological range; platelet counts and spleen-liver indices, however, were comparable to those of the healthy control group. No statistical correlation was found between platelet half-life and paraprotein concentrations. Our findings suggest an initial--so far unexplained-- intravascular process of platelet activation and consumption that finally manifests in shortened platelet half-life. It seems that overt thrombocytopenia develops only when the compensatory capacity of the bone marrow finally becomes exhausted. Further studies should be able to elucidate the pathophysiologic processes involved.


Antibodies ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 37 ◽  
Author(s):  
Jennifer Linden ◽  
Kiel Telesford ◽  
Samantha Shetty ◽  
Paige Winokour ◽  
Sylvia Haigh ◽  
...  

The pore-forming epsilon toxin (ETX) produced by Clostridium perfringens is among the most lethal bacterial toxins known. Sensitive antibody-based reagents are needed to detect toxin, distinguish mechanisms of cell death, and prevent ETX toxicity. Using B-cell immuno-panning and cloning techniques, seven ETX-specific monoclonal antibodies were generated from immunized rabbits. ETX specificity and sensitivity were evaluated via western blot, ELISA, immunocytochemistry (ICC), and flow cytometry. ETX-neutralizing function was evaluated both in vitro and in vivo. All antibodies recognized both purified ETX and epsilon protoxin via western blot with two capable of detecting the ETX-oligomer complex. Four antibodies detected ETX via ELISA and three detected ETX bound to cells via ICC or flow cytometry. Several antibodies prevented ETX-induced cell death by either preventing ETX binding or by blocking ETX oligomerization. Antibodies that blocked ETX oligomerization inhibited ETX endocytosis and cellular vacuolation. Importantly, one of the oligomerization-blocking antibodies was able to protect against ETX-induced death post-ETX exposure in vitro and in vivo. Here we describe the production of a panel of rabbit monoclonal anti-ETX antibodies and their use in various biological assays. Antibodies possessing differential specificity to ETX in particular conformations will aid in the mechanistic studies of ETX cytotoxicity, while those with ETX-neutralizing function may be useful in preventing ETX-mediated mortality.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Franco Bueno ◽  
Gerson Shigueru Kabayashi ◽  
Carla Cristina Gomes Pinheiro ◽  
Daniela Y. S. Tanikawa ◽  
Cassio Eduardo Raposo-Amaral ◽  
...  

Abstract Background Bone reconstruction in congenital craniofacial differences, which affect about 2–3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study, we analyzed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. Methods We obtained levator veli palatini muscle fragments (3–5 mm3), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic, and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model in immunocompetent rats. Results Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90, and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic, and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram™ scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1802-1802 ◽  
Author(s):  
Wenche Jy ◽  
Joaquin J. Jimenez ◽  
Lucia M. Mauro ◽  
Carlos Bidot ◽  
Lawrence L. Horstman ◽  
...  

Abstract INTRODUCTION: We have previously shown that EMP comprise multiple species of vesicles released from endothelial cells (EC) upon stimulation. However, the mechanism underlying EMP release is not clear, nor is their functional role. We postulated that EMP release is initiated by formation of discrete clusters of membrane proteins, each of which may release distinctive EMP characterized by the predominant protein in the cluster or raft. Therefore, each such subspecies may have distinctive activities in cell interaction or other function. In this study, we employed flow cytometry to investigate this postulated mechanism, and compared in vitro with in vivo findings. METHODS: EMP were prepared by incubating renal endothelial cells (EC) with 10 ng/mL of TNF for 24hr. Two-color flow cytometry was used to analyze the phenotypic composition of the resulting EMP, the markers used including CD31, CD62E, CD51, CD54, annexinV (AnV), tissue factor (TF), and lectin Ulex europaeus I (Ulex). Fluorescence microscopy was used to study membrane protein movement and clustering. RESULTS:(1) Phenotypic composition of EMP was evaluated in culture supernatants by flow cytometry, first by the number detected with each marker. Expressed in millions/mL, they were: by Ulex, 280; AnV, 52; CD54, 48; CD62E, 46; CD31, 34; TF, 36; and CD51, 8.(2) Two-color technique was used to establish the degree to which more than 1 marker (antigen) was present on the same EMP. It was found that only a small fraction (<5%) of CD54+ or CD62E+ EMP were also positive for CD31, and vice versa.(3) Cell interactions: Incubating the EMP mixture with neutrophils resulted in selective binding of CD54+ and CD62E+ EMP to the neutrophils and loss of 95% and 70% of free CD54+ and CD62E+ EMP, respectively, from the cell-free supernatants. EMP positive for the other markers showed little binding to leukocytes. These data confirm subspecies of EMP with little overlap of markers and differing affinity for leukocytes. (4) Fluorescence microscopy: Upon EC stimulation, a time-dependent movement of surface markers CD31 and CD54 resulted in their clustering to different locations prior to shedding of vesicles. Majority of vesicles were seen to shed from these clusters. This process may explain how EC can release multiple subspecies of EMP. (5a) In vivo: Levels of CD54+ EMP were always low or nearly undetectable in plasma from patients or normal controls. However, high levels of CD54+ EMP/leukocyte conjugates were found in several thrombotic and inflammatory disorders. This is consistent with in vitro findings. (5b) In vivo total MP: Study of plasma from 26 normal controls showed that MP measured by Ulex were about 3 to 4-fold higher than if measured by AnV. The majority of Ulex+ MP were negative for AnV. SUMMARY:Our data support the hypothesis that upon activation or apoptosis, EC developed multiple membrane protein clusters as a prelude to EMP release.EMP species released from these membrane clusters exhibit distinctive phenotypes and activities such as leukocyte binding.AnV has been widely used a marker for total MP, but this will miss MP not expressing AnV. We show that the lectin marker Ulex gives the highest counts of MP, in vitro and in vivo, suggesting that Ulex may be a better proxy than AnV for defining total MP.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5042-5042
Author(s):  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Paola Neri ◽  
Sonia Vallet ◽  
Norihiko Shiraishi ◽  
...  

Abstract The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a crucial role not only in proliferation and survival of MM cells, but also in osteoclastogenesis. In this study, we examined diverse potential of novel p38MAPK inhibitor LSN2322600 (LSN) for MM therapy in vitro and in vivo. The cytotoxic activity of LSN against MM cell lines was modest; however, LSN significantly enhances the cytotoxicity of Bortezomib by down-regulating Bortezomib-induced heat shock protein (HSP) 27 phosphorylation. We next examined the effects of LSN on cytokine secretion in MM cells, bone marrow stromal cells and osteoclast precursor cells. LSN inhibited IL-6 secretion from long-term cultured-bone marrow stromal cells (LT-BMSCs) and bone marrow mononuclear cells (BMMNCs) from MM patients in remission. LSN also inhibited MIP-1 α secretion by fresh tumor cells, BMMNCs and CD14 positive cells. Since these cytokines mediate osteoclastogenesis, we further examined whether LSN could inhibit osteoclastogenesis. Importantly, LSN inhibited in vitro osteoclastogenesis induced by macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of nuclear factor- κ B ligand (sRANKL), as well as osteoclastogenesis in the severe combined immunodeficiency (SCID)-Hu mouse model of human MM. These results suggest that LSN represents a promising novel targeted strategy to reduce skeletal complications as well as to sensitize or overcome resistance to Bortezomib.


Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1468-1478 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas Pitsillides ◽  
Brian Thompson ◽  
...  

Abstract Interactions between multiple myeloma (MM) cells and the BM microenvironment play a critical role in the pathogenesis of MM and in the development of drug resistance by MM cells. Selectins are involved in extravasation and homing of leukocytes to target organs. In the present study, we focused on adhesion dynamics that involve P-selectin glycoprotein ligand-1 (PSGL-1) on MM cells and its interaction with selectins in the BM microenvironment. We show that PSGL-1 is highly expressed on MM cells and regulates the adhesion and homing of MM cells to cells in the BM microenvironment in vitro and in vivo. This interaction involves both endothelial cells and BM stromal cells. Using loss-of-function studies and the small-molecule pan-selectin inhibitor GMI-1070, we show that PSGL-1 regulates the activation of integrins and downstream signaling. We also document that this interaction regulates MM-cell proliferation in coculture with BM microenvironmental cells and the development of drug resistance. Furthermore, inhibiting this interaction with GMI-1070 enhances the sensitization of MM cells to bortezomib in vitro and in vivo. These data highlight the critical contribution of PSGL-1 to the regulation of growth, dissemination, and drug resistance in MM in the context of the BM microenvironment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3153-3153
Author(s):  
Christopher Richard Marlein ◽  
Rebecca H Horton ◽  
Rachel E Piddock ◽  
Jayna J Mistry ◽  
Charlotte Hellmich ◽  
...  

Abstract Background Multiple myeloma (MM) is malignancy highly reliant on its microenvironment. In this study, we investigated whether mitochondrial transfer occurred between bone marrow stromal cells (BMSC) and malignant plasma cells. We then used our observations as a platform to investigate the mechanisms controlling pro-tumoral mitochondrial transfer with a view to identifying druggable targets. Methods Primary MM cells were obtained from patients' bone marrow after informed consent and under approval from the United Kingdom Health Research Authority. Animal experiments were conducted under approvals from the UK Home Office and the University of East Anglia Animal Welfare and Ethics Review Board. Primary BMSC were also obtained from patient bone marrow, using adherence and characterised using flow cytometry. Mitochondrial transfer was assessed using two methods; a MitoTracker Green based staining of the BMSC (in-vitro), rLV.EF1.AcGFP-Mem9 labelling of the MM plasma membrane with MitoTracker CMXRos staining of the BMSC (in-vitro) and an in vivo MM NSG xenograft model. CD38 expression on MM cells was tested after ATRA treatment, using RT-qPCR and flow cytometry. Mitochondrial transfer levels were assessed when CD38 was over expressed using ATRA or inhibited using lentivirus targeted shRNA. Results We report that mitochondria are transferred from BMSC to MM cells. First, we cultured MM cells on MitoTracker Green labelled BMSC and found increased MitoTracker Green fluorescence in the MM cells. We then transduced MM with rLV.EF1.AcGFP-Mem9 lentivirus and stained BMSC with MitoTracker CMXRos and used wide field microscopy to show MM derived tunnelling nanotubles (TNT) formed between MM cells and BMSC, with red mitochondria located within the GFP-tagged TNT. Next, we engrafted the MM cell lines MM1S and U266 into NSG mouse, after isolation we detected the presence of mouse mitochondrial DNA in the purified MM population. Together, these data show that mitochondria are transferred from BMSC to MM cells. We next analysed OXPHOS levels in MM cells grown on BMSC, using the seahorse extracellular flux assay. We found that the MM cells had increased levels of OXPHOS after culture with BMSC, which was also the case for MM cell lines analysed after isolation from NSG mice, showing the micro-environment of MM can alter the metabolism of the malignant cell. To examine whether the mitochondrial transfer process was controlled by CD38, we knocked down CD38 in MM cells using lentiviral targeted shRNA. We found reduced levels of mitochondrial transfer in CD38KD MM cells, with a consequent reduction of OXPHOS in the malignant cells. Finally, as ATRA has previously been shown to increase CD38 expression in AML, we next quantified CD38 mRNA and surface glycoprotein level on malignant plasma cells with and without ATRA treatment. We found ATRA increased CD38 expression at the mRNA and protein levels and this resulted in an increase in mitochondrial transfer from BMSC to MM cells. Conclusion Here we show that CD38 mediated mitochondrial transfer in the MM micro-environment forms part of the malignant phenotype of multiple myeloma. This finding develops our understanding of the mechanisms which underpin the efficacy of CD38 directed therapy in MM. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document