scholarly journals Targeted Deep Sequencing of Genetic Alterations Identified By Whole Exome Sequencing Reveals Clonal Evolution in Pediatric T-Lymphoblastic Leukemia

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 491-491
Author(s):  
Joachim Kunz ◽  
Obul R Bandapalli ◽  
Tobias Rausch ◽  
Adrian Stuetz ◽  
Paulina Pechanska ◽  
...  

Abstract Precursor T-cell acute lymphoblastic leukemia (T-ALL) represents one of the major challenges of pediatric oncology, because relapses are frequently refractory to treatment and fatal. The molecular understanding of progression to relapse in T-ALL is limited. We aimed at identifying patterns of clonal evolution and at describing mechanisms of relapse by comparing the genetic and epigenetic alterations in primary and in relapsed pediatric T-ALL. DNA from bone marrow of 13 patients with T-ALL at primary disease, remission and relapse was analyzed by a combination of multiplex ligation- dependent probe amplification (MLPA), Illumina 450k array, whole exome sequencing (WES) and targeted deep sequencing. Targeted deep sequencing was performed after target capture with Agilent HaloPlex. In the target capture design, all loci that showed somatic mutations in WES were included. Deep sequencing was done on all primary disease and relapse samples and on a subset of remission samples. Allele frequencies by HaloPlex were highly reproducible, corresponded well to allele frequencies of loci that were well covered in WES and were consistent after serial dilutions. Analysis of DNA methylation using the Illumina 450k array showed that methylation of relapse samples does not differ significantly from the methylation of the matching primary disease samples, with the variability between different patients being much larger than the variability within samples from the same patient. WES identified on average 10 single nucleotide variants (SNVs) and 1.8 small insertions and deletions (indels) in primary T-ALL and 23.2 SNVs and 2.6 indels in the corresponding relapse samples. Only about 30% of SNVs and indels identified in relapse were already detected in primary disease by WES, while most amplifications and deletions that had been detected by the combination of MLPA and read depth analysis of WES data were conserved from primary disease to relapse. Recurrently, we identified known and novel drivers of T-ALL (NOTCH1, FBXW7, PHF6, WT1, PTEN, NRAS, STAT5B). Targeted resequencing of mutated genes at high depth (median coverage 6233, 90% of targets covered >1000x) identified rare subclonal alleles with a sensitivity in the range of 10-2 to 10-4, depending on the coverage of each individual locus. This allowed us to distinguish de novo mutations that were acquired during treatment from mutations that had already been present at initial diagnosis and were selected for in relapse. Depending on the contribution of clonal selection or de novo mutations, at least two different patterns of relapse could be identified: In a smaller proportion of leukemias, all mutations present at first diagnosis were again detected in relapse, with some additional mutations that were specific for relapse. In most leukemias, the major clone at relapse had arisen from a minor subclone at primary disease and has acquired additional mutations, indicating that clonal selection was the main contributor to the evolution of relapse. In all cases, at least one genetic alteration was detected in samples from both time points. The example of activating mutations in the nucleotidase NT5C2, which have previously been proposed to contribute to resistance against nucleoside analogues, illustrates the genetic plasticity of T-ALL: Activating NT5C2 mutations were identified in 4 out of 13 relapse samples. The only activating NT5C2 mutation that was already detected in a primary disease sample at low allele frequency was not present in the corresponding relapse sample but was replaced by another activating NT5C2 mutation. This indicates that mutations acquired during treatment may outcompete subclonal mutations that were present in the primary leukemia. In at least two relapse samples, subclonal NT5C2 mutations were detected, compatible with the notion that acquisition of resistance towards chemotherapy by mutation of NT5C2 is a late event on the way to relapse. Conclusion: The acquisition of novel genetic alterations and selection of treatment resistant subclones are main contributors to T-ALL relapse. We now aim at identifying molecular signatures that characterize treatment resistant subclones, which may be included in risk stratification algorithms of primary T-ALL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 598-598
Author(s):  
Mariam Ibáñez ◽  
Alexander Neef ◽  
Carmen Martínez-Losada ◽  
Esperanza Such ◽  
Desiree Company ◽  
...  

Abstract Purpose: Acute myeloid leukemia (AML) is associated with progressive accumulation of genetic alterations in hematopoietic progenitors. Massive sequencing allows inference of the clonal architecture of hematologic malignancies, by determining the presence of subclones, their genetic composition and evolution. The objective of the present study was to determine the spectrum of mutations present at relapse and define the proportion of cellular clones and the genetic architecture of the evolution of patients with de novo AML. Methods: Paired samples (diagnostic/relapse) of 44 patients of the University Hospital La Fe with de novo AML and treated with consecutive PETHEMA schemes were studied. The samples were provided by the Biobanco La Fe. The median age was 59 years (range 17 - 89); 21M/13F; 17 patients with normal karyotype; 14 patients with FLT3-ITD positive and 9 with mutations in NPM1. Using an amplicon panel (Ampliseq, Life Technologies) for deep sequencing (10.000x) with an Ion Torrent Proton, the complete coding regions of the following genes were sequenced, BCOR, BRAF, CDKN2A, CEBPA, DNMT3A, ETV6, EZH2, GNAS, LUC7L2, NF1, PHF6, PTPN11, RAD21, RPS14, SF1, SF3A1, SMC3, SPARC, SRSF2, STAG2 and ZRSR2, as well as, the hotspot regions of ASXL1, MPL, NPM1, JAK2, KRAS, NRAS, TET2, U2AF1, KIT, IDH1, RUNX1, IDH2, SETBP1, TP53, WT1, CBL, SF3B1 and FLT3. Primary bioinformatic analysis was performed using an in-house protocol and variants were selected based on VAF ≥ 1%, its absence in the healthy population (UCSC Common SNPs; MAF < 0.01) and its putative effect on the protein. Results: At least one alteration was detected in 98% of patients, (n = 43). At a mean sequencing depth of 8967x, in total, 249 mutations were detected with an average of 3.3 mutations per patient and sample (range 0 - 8). Comparing the two time points, we noted that 45% of the mutations were present at both moments, with rather similar VAF values. However, 24% were acquired during progression while 31% went missing at the time of relapse. Regarding the mutated genes analyzed at diagnosis, in 8 of 44 patients one single gene clone was detected, in 26 two subclones and in 10 three or more subclones. In addition, two different patterns of clonal evolution were detected. In model 1 the dominant founder clone persisted at relapse (n = 32, 71%), occasionally acquiring new changes, either in the same clone (n = 5) or in a new subclone (n = 17). In model 2 the founder clone was displaced at relapse by new subclones (n = 12, 29%), probably due to selective pressure through competition between subclones or as a consequence of the chemotherapy. Furthermore, the clonal hematopoiesis models did not show an association with clinical variables or prognostic impact on OS or EFS (P = 0.317; P = 0.12, respectively). Conclusions: AML cells can acquire additional mutations at relapse. Some of those may contribute to the clonal selection responsible for disease progression. Two models of clonal evolution were observed: model 1, where the dominant founder clone persists during relapse, and, model 2, where the founder clone is displaced by new cell subclones, displaying, both models, a similar impact on outcome. Financed by the Spanish Foundation of Hematology (FEHH), PI12/01047, RD12/0036/0014, PIE13/00046, PI13/01640, PI13/02837, PT13/0010/0026, PI14/01649, ACOMP2015/0335 and PROMETEOII/2015/study/025. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Ariel Kleman ◽  
Arun K Singavi ◽  
Lauren Pommert ◽  
Michael T Zimmerman ◽  
Wendy Demos ◽  
...  

Background: Patients (pts) diagnosed with multiple myeloma (MM) are at risk for developing secondary hematologic malignancies (SHM). The etiology of SHM-associated genetic alterations (GAs) is unclear. We hypothesized that the GAs present in MM-associated SHMs would have a distinct profile compared to de novo or other therapy related hematologic malignancies. Aims: For MM pts who develop SHM, compare GAs at Autologous Stem Cell Transplant (ASCT) and at diagnosis of SHM. Assess for presence of previously reported deleterious myeloid GAs and determine if there is clonal evolution from the autograft. Methods: We retrospectively identified 9 MM pts with SHM post-ASCT. Autograft (auto) cells and SHM Fresh Frozen Plasma Extraction (FFPE) samples underwent whole exome sequencing. GAs with known clinical significance, variant allele frequency (VAF) ≥0.05 or ≤0.9, and high or moderate impact on the gene-encoded protein were included for analysis. From literature review, we identified 89 reported GAs (kmGAs) in myeloid malignancies. Targeted deep sequencing for these mutations was performed to obtain the VAF in both the auto and SHM FFPE samples. Results: 9 adult pts (age 56-71) with MDS, AML, or ALL were included. 8 auto samples and 9 SHM samples were available. All pts received induction therapy prior to ASCT (44% and 55% with lenalidomide/thalidomide or bortezomib containing regimens, respectively). Lenalidomide maintenance was utilized in 60% of pts. Whole exome sequencing revealed 118,614 GAs in all samples. 2074 GAs were included. Average mutational burden was similar between the auto and SHM samples. For paired samples (matched auto and SHM samples for each pt), 1173 GAs with kmGAs of GATA2, SETBP1, and ATM were present. GATA2 and SETBP1 were present in 3 and 5 auto samples, and 4 and 6 SHM samples, respectively. SETBP1 and GATA2 were present in paired samples for 3 and 1 pt, respectively. Targeted deep sequencing revealed significant mutations in SHM samples, but not auto samples, for ABCA12, ASXL1, BCOR, BRAF, EXH2, KDM5A, KMT2A, KMT2D, NOTCH1, PRPF8, TET2, and TP53. The most highly represented mutation was TP53 which was present in 6 pts, followed by KMT2A in 3 pts, KMT2D in 3 pts, PRPF8 in 2 pts, and TET2 in 2 pts. The patient who carried the most significant mutations carried the diagnosis of ALL, harboring 11 genetic mutations in the SHM sample only. For paired samples, KDM5A, KMT2D, FLT3, SETBP1, ZRSR2, PRPF8, TET2, and TP53 showed mutations in both auto and SHM samples, showing stable or decreased VAFs. GATA2 showed two moderate impact missense mutations, one in a pt with a VAF of 0.58 in the auto sample and 0.40 in the SHM. The other GATA2 variant appeared as a novel mutation in one pt's SHM sample and was also present in two other pts with VAFs of 0.5 and 0.49 in the auto sample increasing to 0.81 and 0.70 in the SHM sample, respectively. TP53 showed the highest number of variants. Analysis showed 6 high impact variants with VAFs ranging from 0.05-0.80 and 3 moderate impact variants with VAFs ranging from 0.08-0.89. These mutations were represented in both the auto and SHM samples included. There were several TP53 alterations with the most frequent being structural interaction variants, missense variants, and frameshift variants. Conclusion: This limited cohort demonstrates that mutational profile for pts with SHM is distinct from de-novo myeloid malignancies, and the average mutational burden did not change from pre-transplant to the development of SHM. In this population, TP53, KMT2A, GATA2, and KMT2D represented the most frequent SHM mutations. Targeted deep sequencing revealed that most significant variants were present only in SHM samples suggesting a novel mutation rather than clonal evolution from the auto sample. Disclosures Hari: Incyte Corporation: Consultancy; Takeda: Consultancy; BMS: Consultancy; Amgen: Consultancy; GSK: Consultancy; Janssen: Consultancy.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 214
Author(s):  
Željko Antić ◽  
Stefan H. Lelieveld ◽  
Cédric G. van der Ham ◽  
Edwin Sonneveld ◽  
Peter M. Hoogerbrugge ◽  
...  

Pediatric acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and is characterized by clonal heterogeneity. Genomic mutations can increase proliferative potential of leukemic cells and cause treatment resistance. However, mechanisms driving mutagenesis and clonal diversification in ALL are not fully understood. In this proof of principle study, we performed whole genome sequencing of two cases with multiple relapses in order to investigate whether groups of mutations separated in time show distinct mutational signatures. Based on mutation allele frequencies at diagnosis and subsequent relapses, we clustered mutations into groups and performed cluster-specific mutational profile analysis and de novo signature extraction. In patient 1, who experienced two relapses, the analysis unraveled a continuous interplay of aberrant activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) activity. The associated signatures SBS2 and SBS13 were present already at diagnosis, and although emerging mutations were lost in later relapses, the process remained active throughout disease evolution. Patient 2 had three relapses. We identified episodic mutational processes at diagnosis and first relapse leading to mutations resembling ultraviolet light-driven DNA damage, and thiopurine-associated damage at first relapse. In conclusion, our data shows that investigation of mutational processes in clusters separated in time may aid in understanding the mutational mechanisms and discovery of underlying causes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 362-362 ◽  
Author(s):  
Dan A. Landau ◽  
Eugen Tausch ◽  
Sebastian Böttcher ◽  
Chip Stewart ◽  
Ivana Bozic ◽  
...  

Abstract Clonal evolution in response to therapy is a central feature of disease relapse. This raises a fundamental question in cancer biology: what enables the relapse clone to replace the pre-treatment clone? In other words, is the increased fitness of the relapse clone due to a lower death rate during therapy (less sensitivity to therapy) or a higher growth rate following therapy (superior ability to compete during repopulation)? We sought to address this question in chronic lymphocytic leukemia (CLL), as its relatively indolent disease kinetics enable the study of serially collected samples from the same patient over time. We recently reported the genetic characterization of 278 samples from patients enrolled in the German CLL Study Group CLL8 trial (Nature, in press). These samples were collected prior to first therapy with FC or FCR, and studied using whole-exome sequencing (WES). From this cohort, we further analyzed by WES 59 patients (FC [n = 28] or FCR [n = 31]) at time of relapse. We found that clonal evolution is the rule rather than the exception (57 / 59 CLLs), with TP53 alterations found in relapse in 15 cases. This series constitutes a unique opportunity to dissect the clonal dynamics of treated CLL. We therefore quantified clone-specific death and growth rates by targeted deep sequencing of serial peripheral blood samples, beginning at pre-treatment and ending at relapse. Given the expected minimal mutation detection sensitivity (0.1-1%) by targeted deep sequencing, we only selected samples with >1% CLL cells by flow cytometry. Such samples were available for 23 of 59 patients, with a median of 6 samples/patient (range 3-10). Based on the mutations identified by WES in the pre-treatment and relapse samples, we designed patient-specific multiplexed assays for targeted deep sequencing (median sequencing depth - 6561). A series of normal samples were sequenced together with patient samples to account for sequencing errors. The measurements of the CLL cell fraction in the sample, by sequencing and by flow cytometry, were highly correlated (r=0.89, p<0.001). Moreover, variant allele fraction estimations, by WES and deep sequencing, were highly concordant (RMSE = 0.0894), confirming that deep sequencing provides accurate allelic fractions. Clone-specific growth rates following therapy were calculated based on the measurements taken after therapy end, following exponential growth rate calculation. To calculate the clone-specific death rate during therapy, we applied two complementary approaches. First, measurements were taken after 3 cycles of therapy and the death rate per cycle was calculated. Second, clone-specific growth rates were back extrapolated to estimate the size of the population at the end of therapy, a method we have validated with an ultrasensitive emulsion droplet sequencing approach for targeted mutation detection. We discerned different mechanisms of relapse based on whether the relapse clone harbored mutated TP53 (TP53mut) or other mutations. In CLLs where the relapse clone contained TP53mut(n=10), the TP53mut clone showed lower death rate during therapy compared with the pre-treatment TP53 wildtype (TP53wt) clone (2.4 and 3.8 median log10 reduction, respectively; P = 0.02). On the other hand, the TP53mut clone showed only modestly higher growth rates during repopulation compared with the TP53wt clone (median growth rate of 0.8%/day vs. 0.56%/day, P = 0.13). Thus, differential sensitivityto therapy plays a primary role in TP53mut clonal evolution. In contrast, in the remaining cases whose relapse clone harbored mutations other than in TP53 (e.g., NOTCH1, ATM, SF3B1), we did not find differential sensitivity (median log10 clone reduction of 3.9 for the pre-treatment clone vs. 3.8 for the relapse clone, P=0.9). The primary engine leading to takeover by the relapse clone was a median of 1.5-fold higher growth rate during repopulation compared with the pretreatment clone. These data uncover evolutionary mechanisms in a personalized fashion directly from patient samples. Complementary efforts to apply these methods to define evolutionary mechanisms with targeted therapy are well under way. Thus, precise quantitation of clone-specific fitness in the context of therapy provides the required knowledge infrastructure to design the next generation of therapeutic algorithms, to maximize overall tumor elimination, instead of merely selecting one clone over another. Disclosures Tausch: Gilead: Other: Travel support. Fink:Roche: Honoraria, Other: travel grant. Hallek:Mundipharma: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding; Boehringher Ingelheim: Honoraria, Other: Speakers Bureau and/or Advisory Boards; Celgene: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding; Janssen: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding; Roche: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding; Gilead: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding; AbbVie: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding; Pharmacyclics: Honoraria, Other: Speakers Bureau and/or Advisory Boards, Research Funding. Stilgenbauer:AbbVie, Amgen, Boehringer-Ingelheim, Celgene, Genentech, Genzyme, Gilead, GSK, Janssen, Mundipharma, Novartis, Pharmacyclics, Roche: Consultancy, Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 197-197 ◽  
Author(s):  
Salomon Manier ◽  
Jihye Park ◽  
Samuel Freeman ◽  
Gavin Ha ◽  
Marzia Capelletti ◽  
...  

Abstract Background . Cell-free DNA (cfDNA) sequencing enables serial temporal sampling, which offers the possibility of following the dynamics of biomarkers and clonal evolution in Multiple Myeloma (MM) over time. The use of cfDNA in clinical practice as a molecular biomarker and for monitoring response/resistance is dependent on a comprehensive profile of matched cfDNA and tumor DNA (tDNA) samples. Here we performed Ultra-Low Pass Whole Genome Sequencing (ULP-WGS) followed by whole-exome sequencing (WES) and targeted deep sequencing of matched cfDNA/tDNA samples from MM patients. Methods. We performed next generation sequencing of matched cfDNA/tDNA samples for 63 patients with newly diagnosed or relapsed MM, SMM, or MGUS. Libraries were constructed using the Kappa Hyper kit and sequenced by ultra-low-pass whole-genome sequencing (ULP-WGS, 0.1x coverage) to quantify tumor fraction within cfDNA. WES was performed on 30 matched samples cfDNA/tDNA/germline DNA from 10 patients with more than 5% of tumor fraction. Libraries were hybridized to the Nextera Rapid Capture Exome kit (Illumina) and then sequenced on HiSeq 4000 (Illumina). Targeted deep sequencing was performed on 32 matched cfDNA/tDNA samples from 16 patients using the HaloPlex HS technology (Agilent), allowing for molecular barcoding. Libraries were constructed according to the manufacturer's instructions and sequenced on HiSeq 2500 (Illumina). Sequencing data were analyzed using the Firehose pipelines, including MuTect, ABSOLUTE, ReCapSeg, GISTIC and MutSig. Results. We first used a cost-effective approach to establish the tumor content of cfDNA in a large-scale manner by ULP-WGS. Among 63 tested samples (53 MM, 6 SMM and 4 MGUS patient samples), the tumor fraction within cfDNA ranged from 0 to 81% with a mean of 10%. About 43% of these samples had tumor fraction greater than 5% within cfDNA. To assess whether cfDNA can capture the genetic diversity of MM and inform clinical management, we performed WES of matched cfDNA/tDNA/germline DNA samples for 10 patients (mean target coverage 194x). Copy number alterations (CNAs) assessed by WES (ReCapSeg) were consistent between cfDNA and tumor DNA. Similarly, focal CNAs assessed by GISTIC were consistent between tDNA and cfDNA. We then examined the overlap of somatic single nucleotide variants (SSNVs) between WES of cfDNA and matched tDNA. We found, on average, 100% of the clonal and 96% of the subclonal (range 54-100%) SSNVs that were detected in the tumor were confirmed to be present in cfDNA. Similarly, for mutations detected in the cfDNA, we found, on average, 100% of the clonal and 99% of the subclonal (range 98-100%) SSNVs were confirmed in the tumor. To assess whether targeted deep sequencing of cfDNA could be a good proxy for tumor biopsy we used a targeted deep sequencing approach of known MM driver genes. Libraries were prepared using unique molecular barcodes to avoid duplication rates, for 32 matched cfDNA/tDNA samples from 16 patients with MM. The mean target coverage was 596x. We found similar frequencies of altered MM driver genes in both cfDNA and tDNA, including KRAS, NRAS, and TP53, indicating that cfDNA can be used for precision medicine. Conclusions. Our study demonstrates that both WES and targeted deep sequencing of cfDNA are consistently representative of tumor DNA alterations in terms of CNAs, focal CNAs and SSNVs. This approach could therefore be used to longitudinally follow clonal evolution across the course of the disease and precision medicine in patients with MM. Disclosures Palumbo: Takeda: Employment, Honoraria; Janssen Cilag: Honoraria. Kumar:Noxxon Pharma: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Skyline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Research Funding; Kesios: Consultancy; Glycomimetics: Consultancy; BMS: Consultancy; Array BioPharma: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding; AbbVie: Research Funding; Onyx: Consultancy, Research Funding. Roccaro:Takeda Pharmaceutical Company Limited: Honoraria. Facon:Amgen: Consultancy, Speakers Bureau; Novartis: Consultancy; Janssen: Consultancy, Speakers Bureau; Bristol: Consultancy; Millenium/Takeda: Consultancy; Celgene: Consultancy, Speakers Bureau; Karyopharm: Consultancy. Ghobrial:Celgene: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Noxxon: Honoraria; Novartis: Honoraria; Takeda: Honoraria; Amgen: Honoraria.


2017 ◽  
Author(s):  
Veronica Gonzalez-Pena ◽  
Matthew MacKay ◽  
Iwijn De Vlaminck ◽  
John Easton ◽  
Charles Gawad

AbstractEnsemble-averaged genome profiling of diagnostic samples suggests that acute leukemias harbor few somatic genetic alterations. We used single-cell exome and error-corrected sequencing to survey the genetic diversity underlyingETV6-RUNX1acute lymphoblastic leukemia (ALL) at high resolution. The survey uncovered a vast range of low-frequency genetic variants that were undetected in conventional bulk assays, including additional clone-specific “driver” RAS mutations. Single-cell exome sequencing revealed APOBEC mutagenesis to be important in disease initiation but not in progression and identified many more mutations per cell than previously found. Using this data, we created a branching model ofETV6-RUNX1ALL development that recapitulates the genetic features of patients. Exposure of leukemic populations to chemotherapy selected for specific clones in a dose-dependent manner. Together, these data have important implications for understanding the development and treatment response of childhood leukemia, and they provide a framework for using population genetics to deeply interrogate cancer clonal evolution.One-Sentence SummaryAPOBEC and replication-associated mutagenesis contribute to the development of ETV6-RUNX1 ALL, creating massive leukemic population genetic diversity that results in clonal differences in susceptibilities to chemotherapy.


2019 ◽  
Vol 112 (5) ◽  
pp. 540-544 ◽  
Author(s):  
Johanna F Dekkers ◽  
James R Whittle ◽  
François Vaillant ◽  
Huei-Rong Chen ◽  
Caleb Dawson ◽  
...  

Abstract Breast cancer is characterized by histological and functional heterogeneity, posing a clinical challenge for patient treatment. Emerging evidence suggests that the distinct subtypes reflect the repertoire of genetic alterations and the target cell. However, the precise initiating events that predispose normal epithelium to neoplasia are poorly understood. Here, we demonstrate that breast epithelial organoids can be generated from human reduction mammoplasties (12 out of 12 donors), thus creating a tool to study the clonal evolution of breast cancer. To recapitulate de novo oncogenesis, we exploited clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 for targeted knockout of four breast cancer–associated tumor suppressor genes (P53, PTEN, RB1, NF1) in mammary progenitor cells from six donors. Mutant organoids gained long-term culturing capacity and formed estrogen-receptor positive luminal tumors on transplantation into mice for one out of six P53/PTEN/RB1–mutated and three out of six P53/PTEN/RB1/NF1–mutated lines. These organoids responded to endocrine therapy or chemotherapy, supporting the potential utility of this model to enhance our understanding of the molecular events that culminate in specific subtypes of breast cancer.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1089-1089 ◽  
Author(s):  
Charles G Mullighan ◽  
Ina Radtke ◽  
Jinghui Zhang ◽  
Letha A. Phillips ◽  
Xiaoping Su ◽  
...  

Abstract Expression of BCR-ABL1 is the hallmark of chronic myelogenous leukemia (CML) and a subset of de novo acute lymphoblastic leukemia (ALL), but the factors determining disease lineage, and progression of CML to myeloid or lymphoid blast crisis, are incompletely understood. We recently reported deletion of IKZF1 (encoding the lymphoid transcription factor Ikaros) in 85% of de novo pediatric and adult BCR-ABL1 ALL, and in lymphoid blast crisis in a small cohort of CML cases (Nature2008;453:110), suggesting that IKZF1 deletion is important in the pathogenesis of BCR-ABL1 lymphoid leukemia. To identify genetic determinants of disease stage and blast crisis lineage in CML, we have now performed high-resolution, genome wide analysis of DNA copy number abnormalities (CNA) and loss-of heterozygosity (LOH) and candidate gene resequencing in a cohort of 90 CML patients that included 64 samples obtained at chronic phase (CP), 15 samples at accelerated phase (AP), 9 lymphoid blast crisis (LBC) and 22 myeloid blast crisis (MBC) samples. Importantly, 25 patients had sequential samples (CP and/or AP, as well as blast crisis samples) enabling analysis of lesions acquired at progression to blast crisis. All blast crisis samples were flow sorted to at least 90% purity prior to DNA extraction. Germline samples for 28 cases obtained at remission or by flow sorting of blast crisis samples were also examined. Affymetrix SNP 6.0 arrays, interrogating over 1.87 million genomic loci, were used for 85 samples, and 500K arrays for the remainder. Identification of tumor-specific (somatic) copy number analysis was performed by directly comparing CML samples to matched germline samples were available, or by filtering results against databases of inherited copy number variants for samples lacking germline material. Genomic resequencing of IKZF1, PAX5 and TP53 was performed for all AP, LBC and MBC samples. There were few CNAs in CP-CML (mean 0.27 deletions and 0.07 gains per case), with no recurring lesions identified apart from deletions or gains at the chromosomal breakpoints of BCR and ABL1 (3 cases each). Notably, the size of these translocation associated deletions was highly variable, ranging from 6kb (one ABL1 deletion) and 15 kb (one BCR deletion) to deletions extending to the telomeres of chromosomes 9 and 22. No significant increase in lesion frequency was identified in AP cases (0.14 deletions and 0.9 gains per case), however the number and cumulative extent of genomic aberrations was significantly higher in both lymphoid and myeloid blast crisis samples. LBC cases had a mean of 8.1 deletions/case (P&lt;0.0001v CP) and 2.8 gains/case (P=0.0024), where as MBC had fewer alterations with only an average of 2.8 deletions/ case (P=0.028 v CP) and 2.2 gains/case (P=0.0018). Similarly, the cumulative extent of DNA altered by CNAs was higher in both LBC (200 Mb/case) and MBC (257 Mb/case) than CP-CML (4.1 Mb/case). There were striking differences in the type of CNAs in MBC and LBC samples. Seven of 9 LBC cases had focal CNAs targeting genes regulating normal B-lymphoid development, including IKZF1 (6 cases, 2 homozygous), PAX5 (4 cases), and EBF1 (1 case with focal homozygous deletion restricted to the EBF1 locus). Thus, of these 7 cases, two had a single CNA in this pathway, three had two lesions, and two cases had three lesions. In contrast, only 4 of 22 MBC cases had lesions in this pathway, most commonly from whole or sub chromosomal deletions involving chromosomes 7 and 9. Deletion of the CDKN2A/B locus (encoding the tumor suppressors and cell cycle regulators INK4A, ARF and INK4B) was seen in 6 (67%) LBC samples, but only 2 (9%) MBC cases, and never in CP or AP CML. Other lesions commonly seen in de novo BCR-ABL1 ALL were also observed in LBC samples, including deletions of MEF2C, C20orf94, and the HBS1L gene immediately upstream of the oncogene MYB. Apart from acquisition of new or more complex abnormalities involving BCR and ABL1, the only recurring mutation observed in MBC was deletion (4 cases) or splice-site point mutations (2 cases) of TP53. These data demonstrate a lack of genomic instability with few genetic alterations in CP or AP CML. Lymphoid blast crisis samples have similar genetic alterations to those seen in de novo BCR-ABL1 ALL, whereas myeloid blast crisis displays completely distinct patterns of mutation, most commonly targeting P53. These results indicate that genomic abnormalities are important determinants of lineage and disease progression in BCR-ABL1 leukemia.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 692-692
Author(s):  
Esmé Waanders ◽  
Stephanie M Dobson ◽  
Xiaotu Ma ◽  
Debbie Payne-Turner ◽  
Guangchun Song ◽  
...  

Abstract Introduction: Despite risk stratification according to presenting clinical and genetic features, 10-25% of children with acute lymphoblastic leukemia (ALL) relapse, which is associated with a poor prognosis. Here, we sought to provide a comprehensive overview of the genetic alterations associated with relapse in ALL. Methods: We studied 93 children (27 female, 43 male) diagnosed with ALL (62 B-progenitor, 25 T-lineage) between 1987 and 2008 and treated on total therapy studies XI-XVI who experienced relapse and/or a second tumor. Age at diagnosis ranged from 3 months to 18 years. Median time to relapse was 3 years (range 3 months to 10 years). Seventy patients had a single relapse, 15 cases had 2 relapses, and 8 cases developed a second tumor of different lineage (B-cell lymphoma, chronic myeloid leukemia (n=1 each) and acute myeloid leukemia (n=6)). Diagnosis, relapse and matched normal samples (n=299) were studied using Affymetrix SNP 6.0 microarrays and whole genome or whole exome sequencing. Results: We found 2692 copy number aberrations (CNAs) with a median of 9 (range 0-109) in the diagnosis samples (n=91) compared to a median of 10 (range 0-112) in the relapse samples (n=89) and 12 (range 0-70) in subsequent samples (n=20). The number of CNAs did not differ significantly between diagnosis, relapse or subsequent samples. We identified a 7286 non-silent single nucleotide variants (SNVs) and small insertions or deletions (indels) in 5002 genes, 1392 of which were recurrent. The median number of variants was 12 (range 0-70) at diagnosis (n=91), 21 (range 0-858) at relapse (n=91; P=0.0029 v. diagnosis) and 60 (range 10-650) in subsequent samples (n=20; P<0.0001 v. diagnosis). A subset of samples revealed very high (variant range 658-1703; 7 cases, 9 samples: all relapse or subsequent samples), or high mutation burden (variant range 104-290; 12 cases, 16 samples: 2 diagnosis, 10 relapse, and 4 subsequent samples). Genes encoding mediators of DNA repair were affected in all cases with very high mutation burden, compared to 7 of the high burden cases and 18 out of 72 other cases (most commonly genes TP53, MSH2, and MUTYH; P<0.0001). The most frequently mutated genes were NOTCH1 (n=33), NRAS (n=24), CREBBP (n=20) and KRAS (n=16). Of the recurrently altered genes, only 87 genes were known to be affected in cancer (Cancer Gene Census, COSMIC database), of which 59 were affected in leukemia and lymphoma tissues, indicating that we have identified 1306 novel recurrently affected genes, most commonly C13orf40 and MKI67. Mutations in epigenetic regulators were particularly frequent, with genes mutated in at least 3 cases altered in over 60% of the cohort (e.g. CREBBP, EP300, MLL2, MLL3, KDM6A/B, CTCF, SETD2, TET2/3, and EZH2). Clonal evolution analyses showed multiple patterns of evolution, with relapses sharing either few or many variants with the diagnosis sample in a frequency that reflects both predominant clones and minor subclones propagating relapse. Variants in NOTCH1, NRAS, and CREBBP were preserved from a major clone at diagnosis in 4, 6, and 5 cases respectively, but acquired at relapse or grown out from a minor subclone at diagnosis in 3, 5, and 8 cases respectively. In contrast, variants in USH2A (n=4), FOXA1 (n=3), and purine/pyrimidine synthesis pathway genes NT5C2 (n=3), PRPS1 (n=3) and NT5C1B (n=1) were exclusively found in relapse samples. Notably, the NT5C2 mutations, which are thought to confer resistance to thiopurines, were subclonal at relapse in the majority of cases. We identified 13 cases (10 B-lineage, 3 T-lineage) in which the diagnosis and relapse were fully discordant for all CNAs and sequence mutations, only 4 of which showed a prolonged remission time (>5 years). This suggests that these patients developed a second primary malignancy and may be predisposed to leukemia development. Indeed, one case revealed focal amplifications on chromosome 1q21.1 encompassing the neuroblastoma breakpoint family genes, which are implicated in cancer development. Comprehensive germline analyses are underway. Conclusion: This study has provided detailed insight into the genetic basis of relapse, implicating multiple new genes and pathways involved in treatment resistance, demonstrating multiple patterns of clonal evolution, and revealing an unexpectedly high frequency of genetically discordant second malignancy in relapse in ALL. Disclosures Evans: Prometheus Labs: Patents & Royalties: Royalties from licensing TPMT genotyping. Mullighan:Amgen: Honoraria, Speakers Bureau; Cancer Science Institute: Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy, Honoraria; Loxo Oncology: Research Funding.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1306-1310 ◽  
Author(s):  
CH Pui ◽  
SC Raimondi ◽  
FG Behm ◽  
J Ochs ◽  
WL Furman ◽  
...  

Abstract Analyses of bone marrow blast cells collected at diagnosis and relapse from 68 children with acute lymphoblastic leukemia (ALL) demonstrated changes in the expression of cell markers in one-fourth of the patients. Loss of the common ALL antigen (CALLA) was a frequent change, occurring in 8 of the 51 cases initially classified as common or pre-B ALL. The HLA-DR antigen was either acquired or lost in 5 of the 68 cases, terminal deoxynucleotidyl transferase was lost in 6 of 25 cases, and reactivity of the T10 antigen with monoclonal antibodies was increased in 6 of 17 cases of non-T cell ALL. Conversion to acute nonlymphoblastic leukemia, so-called lineage switch, was noted in two cases of common ALL and one of pre-B ALL, coinciding with the loss of CALLA. Results of chromosomal analyses in cases with a loss of CALLA implicated several mechanisms in the observed phenotypic changes. In six cases, including each instance of lineage switch, the original karyotype had been replaced by an entirely different abnormal karyotype, suggesting clonal selection or induction of a second malignancy. In another case, the evidence suggested clonal evolution. Our findings demonstrate that sequential phenotypic and cytogenetic studies may yield valuable insights into the mechanisms of leukemic recurrence and may have implications for treatment selection.


Sign in / Sign up

Export Citation Format

Share Document