Excessive Anti-Viral CD8 T Cell Activation Inverts the IL-2 Consumptive Hierarchy Triggering Regulatory T Cell Collapse in Mouse Model for Hemophagocytic Lymphohistiocytosis

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1025-1025
Author(s):  
Stephanie Humblet-Baron ◽  
Dean Franckaert ◽  
Simon Bornschein ◽  
Bénédicte Cauwe ◽  
Susann Schonefeldt ◽  
...  

Abstract Hemophagocytic lymphohistiocytosis (HLH) is a severe inflammatory condition driven by excessive CD8+ T cell activation. HLH occurs in both acquired and familial (FHL) forms, with mutations in Perforin being a common cause of FHL. In both conditions a sterile or infectious trigger is required for disease initiation, which then becomes self-sustaining and life-threatening. Recent advances using experimental FHL triggered by lymphocytic choriomeningitis virus (LCMV) in Perforin-deficient mice have attributed the key distal event to be excessive IFNγ production, however the proximal events driving immune dysregulation have remained undefined. We investigated the role of regulatory T cells (Tregs) in the pathophysiology of experimental FHL. While we found no primary Treg defects in Perforin-deficient mice, Treg numbers collapsed following LCMV inoculation. The collapse of Treg numbers in LCMV-triggered Perforin-deficient, but not wildtype, mice was driven by the combination of lower IL-2 secretion by conventional CD4+ T cells, increased IL-2 consumption by activated CD8+ T cells and secretion of competitive sCD25 (IL-2 receptor). Together, these data demonstrate that excessive CD8+ T cell activation rewires the IL-2 homeostatic network away from Treg maintenance and towards feed-forward inflammation. In addition, reduced Treg number may contribute to the massive inflammation found in FHL. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3948
Author(s):  
Kazumasa Oya ◽  
Yoshiyuki Nakamura ◽  
Zhu Zhenjie ◽  
Ryota Tanaka ◽  
Naoko Okiyama ◽  
...  

The exact mechanisms of the imiquimod (IMQ)-induced antitumor effect have not been fully understood. Although both topical IMQ treatment and anti-PD-1 antibody may be used for primary skin lesions or skin metastases of various cancers, the efficacy of each monotherapy for these lesions is insufficient. Using a murine tumor model and human samples, we aimed to elucidate the detailed mechanisms of the IMQ-induced antitumor effect and analyzed the antitumor effect of combination therapy of topical IMQ plus anti-PD-1 antibody. Topical IMQ significantly suppressed the tumor growth of MC38 in wildtype mice. IMQ upregulated interferon γ (IFN-γ) expression in CD8+ T cells in both the lymph nodes and the tumor, and the antitumor effect was abolished in both Rag1-deficient mice and IFN-γ-deficient mice, indicating that IFN-γ produced by CD8+ T cells play a crucial role in the IMQ-induced antitumor effect. IMQ also upregulated PD-1 expression in T cells as well as PD-L1/PD-L2 expression in myeloid cells, suggesting that IMQ induces not only T-cell activation but also T-cell exhaustion by enhanced PD-1 inhibitory signaling. Combination therapy of topical IMQ plus anti-PD-1 antibody exerted a significantly potent antitumor effect when compared with each single therapy, indicating that the combination therapy is a promising therapy for the skin lesions of various cancers.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Pierre Paradis ◽  
Antoine Caillon ◽  
Ernesto L Schiffrin

Cell Reports ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 68-79.e4 ◽  
Author(s):  
Lauren E. Holz ◽  
Julia E. Prier ◽  
David Freestone ◽  
Thiago M. Steiner ◽  
Kieran English ◽  
...  

1999 ◽  
Vol 190 (9) ◽  
pp. 1275-1284 ◽  
Author(s):  
Leo Lefrançois ◽  
Sara Olson ◽  
David Masopust

The role of CD40 ligand (CD40L) in CD8 T cell activation was assessed by tracking antigen-specific T cells in vivo using both adoptive transfer of T cell receptor transgenic T cells and major histocompatibility complex (MHC) class I tetramers. Soluble antigen immunization induced entry of CD8 cells into the intestinal mucosa and cytotoxic T lymphocyte (CTL) differentiation, whereas CD8 cells in secondary lymphoid tissue proliferated but were not cytolytic. Immunization concurrent with CD40L blockade or in the absence of CD40 demonstrated that accumulation of CD8 T cells in the mucosa was CD40L dependent. Furthermore, activation was mediated through CD40L expressed by the CD8 cells, since inhibition by anti-CD40L monoclonal antibodies occurred after adoptive transfer to CD40L-deficient mice. However, mucosal CD8 T cells in normal and CD40−/− mice were equivalent killers, indicating that CD40L was not required for CTL differentiation. Appearance of virus-specific mucosal, but not splenic, CD8 cells also relied heavily on CD40–CD40L interactions. The mucosal CTL response of transferred CD8 T cells was MHC class II and interleukin 12 independent. The results established a novel pathway of direct CD40L-mediated CD8 T cell activation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2725-2725 ◽  
Author(s):  
Matthias Klinger ◽  
Peter Kufer ◽  
Petra Kirchinger ◽  
Ralf Lutterbüse ◽  
Eugen Leo ◽  
...  

Abstract MT103 (MEDI-538) is a bispecific single-chain antibody construct directed at CD3 on human T cells and CD19 on human B lymphoma and normal B cells. Transient linkage of B and T cells by MT103 provides T cells with a T cell receptor (TCR)-like signal leading to redirected lysis of B cell targets without apparent need of costimulation and inducing T cells to proliferate, secrete cytokines and upregulate surface activation markers. TCR-like signalling by MT103 is strictly dependent on the presence of target cells. Redirected lysis of CD19-positive cells by MT103 is seen at low picomolar concentrations and at low effector-to-target ratios. The in-vivo half-life of MT103 is approximately two hours. In the ongoing dose escalation study MT103-104, patients with relapsed B-NHL have so far received continuous infusion of MT103 at maintenance flow-rates of 0.5, 1.5, 5 and 15 μg/m2/24h for 4 or 8 weeks following a 3+3 dose escalation design. Serum concentrations of MT103 remained constant over the entire treatment period at a level depending on the respective maintenance flow-rate. Depletion of circulating B (lymphoma) cells could be observed more frequently with increasing dose levels (DL) from DL1 to DL3, and in all evaluable patients at DL4. Three of six evaluable patients at DL4 showed clinical responses (2 PR, 1 CR) according to standardized Cheson criteria, but no patient of DL1-3. The time courses of absolute CD4 and CD8 T cell counts in peripheral blood were determined by flow cytometry. CD8 T lymphocytes were further subdivided for analysis into naïve T cells, TCM (central memory T cells), TEM (effector memory T cells) and TEMRA (non-proliferating terminally differentiated CTL), and CD4 T lymphocytes into naïve T cells, TCM and TEM. Activation of CD4 and CD8 T cell subsets was determined by measuring upregulation of CD69, CD25 and HLA-DR. Serum levels of cytokines were determined as additional biomarkers for T cell activation. In 50% of patients at DL1 to DL3, CD4 and CD8 T cell counts increased during the course of treatment - over pre-treatment levels. The TEM subset from both CD4 and CD8 T cells accounted for most of the observed increases, while the naïve T cell subsets showed no increase but also no signs of apoptosis. The non-proliferative TEMRA subset of CD8 T cells also remained unchanged in most patients. This indicated that the selective increase of proliferation-competent TEM subsets was attributed to MT103-induced T cell proliferation. At DL4, all evaluable patients showed signs of T cell expansion after 2 weeks of MT103 infusion, which was most pronounced in those who developed a partial or complete remission. The increase of CD8 T cell counts was more pronounced than that of CD4 T cells. T cell expansion was accompanied by upregulation of T cell activation markers as well as by increases in serum concentrations of cytokines like IFN-γ. T cell expansion and activation reverted in all cases when the infusion of MT103 was stopped. In summary, MT103 induced a reversible secondary T cell response involving T cell activation and proliferation as well as T cell cytotoxicity against circulating B cells and lymphoma tissue. The dose-dependent T cell expansion observed during long-term infusion of MT103, particularly within the cytotoxic TEM subset of CD8 T cells, appears to play a key role for clinical activity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 658-658
Author(s):  
Stephanie C. Eisenbarth ◽  
Jeanne E. Hendrickson ◽  
Samuele Calabro ◽  
Antonia Gallman

Abstract The generation of antibodies against transfused red blood cells (RBCs) can pose a serious health risk, especially in chronically transfused patients requiring life-long transfusion support; yet our understanding of what immune signals or cells dictate when someone will become alloimmunized is lacking. The relative role of dendritic cells, B cells and macrophages in the induction of RBC alloimmunization remain unclear. Given the now well established role of innate immune signals in regulating adaptive immunity, understanding if and how innate immunity is triggered during transfusion may allow development of therapies to prevent alloimmunization in chronically transfused subjects such as those with myelodysplasia or hemoglobinopathies. We have established a murine model system in which we can evaluate both the role of particular innate immune stimuli as well as particular cells of the immune system in regulating the allogeneic response to transfused RBCs. A particularly useful transgenic "HOD mouse" has been engineered, which encodes a triple fusion protein and provides a unique tool to directly assess both RBC-specific T and B cell responses. This RBC-specific antigen contains the model protein antigen hen egg lysozyme (HEL) fused to chicken ovalbumin (OVA) fused to the human Duffyb blood group antigen (HEL-OVA-Duffy) as an integral membrane protein under control of the beta globin promoter. Transfusion of genetically targeted mice lacking various innate immune cells or receptors allows us to screen for important immune pathways regulating the response to allogeneic RBCs. Using these models, we recently discovered that mice lacking the GEF (guanine nucleotide exchange factor) DOCK8 fail to develop alloimmunity to transfused RBCs. Dendritic cells in these knockout mice fail to migrate to T cells due to lack of coordinated actin rearrangement governed by this GEF. Both B cell and T cell activation in the spleen to the transgenic transfused RBCs is abrogated. Inclusion of OVA in the alloantigen of the HOD mice allows us to readily study naïve CD4+ T cell activation following transfusion by using the OTII T cell receptor (TCR) transgenic mice in which essentially all T cells express one antigen receptor specific for a peptide of OVA. By tracking rounds of cell division we found that adoptively transferred OTII undergo more than 5-8 rounds of division in the spleen three days following transfusion of HOD RBCs in WT recipients. In contrast, no OTII proliferation was observed in DOCK8-deficient mice following OTII adoptive transfer and HOD RBC transfusion, suggesting that T cells are failing to receive activation signals by splenic antigen presenting cells. Our preliminary data now suggest that DOCK8-deficient dendritic cells are able to process and present RBC-derived antigens, but do not migrate to T cell zones in the spleen to prime naïve RBC-specific T cells. The need for dendritic cell migration within the spleen in the induction of alloimmunity to transfused RBCs has not been addressed; these mice allow us for the first time to answer these fundamental immunologic questions during transfusion. Future work will aim to determine how dendritic cell movement within the spleen is regulated during transfusion and the specific role of splenic dendritic cell subsets in CD4+ T cell priming to allogeneic RBCs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document