scholarly journals Small Molecule Bda-366 As a Bcl2-BH4 Antagonist for Multiple Myeloma Therapy

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2049-2049
Author(s):  
Jiusheng Deng ◽  
Dongkyoo Park ◽  
Mengchang Wang ◽  
Qiaoya Deng ◽  
Shannon Matulis ◽  
...  

Abstract Multiple myeloma (MM) is the most common hematological malignancy in USA, characterized with excessive abnormal clonal plasma cells in the bone marrow. Despite the great improvement in MM treatment by targeting the normal plasma cell biology of the cells during the last decade, the disease still remains incurable. B-cell lymphoma-2 (Bcl2) protein has four domains: BH1 (Bcl2 homology domain 1), BH2, BH3 and BH4, and plays critical roles in promoting the survival and drug-resistant of MM cells. Unlike the BH1, BH2, and BH3 domains, the BH4 region is responsible for the anti-apoptotic function of Bcl2 protein. Current BH3-mimetic and other Bcl2 inhibitors have been trailed in clinic but showed limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a Bcl2-BH4 domain antagonist with potent anti-MM effect. BDA-366 bound to the BH4 resulted in the decrease of Bcl2 phosphorylation and the exposure of the BH3 domain as detected by anti-Bcl2-BH3 antibodies. Consequently, BDA-366 treatment induced robust apoptotic death on both human MM cell lines (RPMI8226 and U266) and primary MM cells from patients. In NOD-scid/IL2Rγnull (NSG) murine xenograft model, administration of BDA-366 (20mg/kg/day, 5 doses) markedly suppressed the growth of human MM tumor cells in vivo. We propose that BDA-366 as a novel BH4-based anti-MM agent could provide a more efficient pharmacological approach to treat MM. Disclosures No relevant conflicts of interest to declare.

Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5023-5023
Author(s):  
Susana Hernández-García ◽  
Mercè de Frias ◽  
Clara Campàs ◽  
Bruno Paiva ◽  
Enrique M. Ocio ◽  
...  

Abstract Abstract 5023 Multiple myeloma (MM) is a malignancy characterized by the accumulation of plasma cells. The disease represents the second most common hematologic malignancy and remains incurable, despite recent advances in its treatment. Therefore, studies to develop new therapies are still necessary, particularly in patients with bad prognostic factors, such as 17p deleted/p53 mutated patients. In this study we describe the preclinical activity of 5-Aminoimidazole-4-carboxamide-1–4-ribofuranoside (AICAR or acadesine) in multiple myeloma. Acadesine is an analog of AMP that is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy changes. Acadesine induces apoptosis in different cell types including CLL, mantle cell lymphoma (MCL) and splenic marginal zone B-cell lymphoma (SMZL) cells and tumor cell lines, without affecting primary T lymphocytes. Thus, acadesine is a promising drug for the treatment of B-cell neoplasms. A clinical phase I/II study of acadesine is currently being performed in CLL patients. We studied the effects of acadesine on the MTT metabolization of several multiple myeloma cell lines (MM1S, MM1R, RPMI-8266, RPMI-LR5, U266, U266-LR7, U266 Dox4, MM144, MGG, SJR, OPM-2, NCIH-929). Acadesine inhibited MM cell growth and induced apoptosis, with IC50 values in the micromolar range, and independently of the p53 mutational status. Cancer treatment, including myeloma, is generally based on combinations of drugs with different mechanisms of action. Thus, we studied the effect of acadesine in double combinations with drugs used in myeloma therapy, such as dexamethasone, melphalan, doxorubicin, bortezomib, and lenalidomide. Analyses of these data using the Chou and Talalay method indicated that acadesine was synergistic with dexamethasone (CI values of 0.60), and particularly with lenalidomide (CI values of 0.42). These promising results with double combinations promoted the investigation of triple combinations in the MM1S cell line. Triple combination of acadesine plus dexamethasone plus lenalidomide or bortezomib notably improved the efficacy of the respective double combinations, being the combination of acadesine plus lenalidomide plus dexamethasone especially efficient. Further studies to determinate the mechanism of action, and in vivo studies in MM1S xenograph are ongoing. Disclosures: de Frias: Advancell: Employment. Campàs:Advancell: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2056-2056 ◽  
Author(s):  
Chantiya Chanswangphuwana ◽  
Michael P. Rettig ◽  
Walter Akers ◽  
Deep Hathi ◽  
Matthew Holt ◽  
...  

Abstract Background: The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) affects disease progression and provides resistance to therapeutic agents. Very-late-antigen 4 (VLA-4, α4β1 integrin, CD49d/CD29) is a noncovalent, heterodimeric transmembrane receptor that is strongly implicated in the pathogenesis of MM via altering cell trafficking, proliferation and drug resistance. LLP2A is a high-affinity peptidomimetic ligand for activated VLA-4. We recently reported (Soodgupta et al. J. Nucl. Med 2016) the sensitive and specific molecular imaging of activated VLA-4 in mouse MM tumors using 64Cu-LLP2A and LLP2A-Cy5. Here we extended these studies by further characterizing VLA-4 expression in primary human MM samples and malignant plasma cells in mouse models of MM. Methods: We evaluated VLA-4 expression in 5 human MM cell lines (U266, OPM2, H929, RPMI-8226 and MM1.S), one mouse MM cell line (5TGM1) and seventeen primary human MM bone marrow samples by flow cytometry using LLP2A-Cy5, soluble VCAM-1/Fc recombinant protein and CD49d (α4) and CD29 (β1) antibodies. The relative mean fluorescence intensity (RMFI) of LLP2A-Cy5 binding was calculated by dividing the MFI of LLP2A-Cy5 binding in the absence of BIO5192 (small molecule VLA-4 inhibitor) by the MFI of LLP2A-Cy5 binding in the presence of excess BIO5192. The 5TGM1/KaLwRij immunocompetent mouse model of MM was used for in vivo study. Results: The expression of activated VLA-4 on MM cell lines as measured by LLP2A-Cy5+ mean fluorescent intensity (MFI) varied 10-fold as follows (LLP2A-Cy5 MFI in parentheses): 5TGM1 (23.7) > U266 (16.1) > OPM2 (4.6) > H929 (3.4) > RPMI-8226 (3.2) > MM1.S (2.1). We observed similar variable expression of LLP2A-Cy5 binding to primary human CD138+CD38+ MM plasma cells (PCs), with 76.47% (13/17) of MM patients exhibiting greater than 20% LLP2A-Cy5+ PCs. expressing VLA-4 on CD138+CD38+ cells. Overall, the mean percentage of positive cells and LLP2A-Cy5 relative MFI (RMFI) on malignant CD138+ PCs from these 13 patients were 78.2% (43.8-98.3%) and 4.3 (1.7-10.8), respectively. Other hematopoietic cells within the BM samples expressed less VLA-4 in descending order as follows; monocytes (58.2%, RMFI 3.0), T-lymphocytes (34.4%, RMFI 2.1) and B-lymphocytes (21.6%, RMFI 1.6). These levels of VLA-4 expression on normal cell subsets within MM patients were comparable to normal blood donors. In general, there was good correlation between LLP2A-Cy5 binding and expression of CD49d and CD29 on CD138+ PCs in MM patients. To our surprise, the four MM patients with <20% LLP2A-Cy5 binding demonstrated high expression of CD49d (92.1%) but very low percentages of CD29 positive cells (17.3%). Using BIO5192 (VLA-4 inhibitor), we found that the LLP2A-Cy5 reagent allowed more accurate detection of activated VLA-4 than the soluble VCAM-1 binding assay as determined by the magnitude of inhibition of binding in the presence of inhibitor. We next evaluated targeting VLA-4 molecule in murine MM model. Preliminary mouse mobilization studies demonstrated that VLA-4 inhibitors effectively and rapidly mobilized murine 5TGM1 MM cells from the bone marrow to the blood (2.49-fold increase in circulating GFP+CD138+ cells) within 1 hour of injection. Summary:This study is the first demonstration that activated VLA4 can be detected on primary human MM cells using LLP2A. These data support the continued development of LLP2A as a molecular diagnostic imaging reagent for MM and as a potential therapeutic target of VLA-4 in MM. Ongoing studies are testing whether small molecule VLA-4 inhibitors can sensitize MM cells to cytotoxic therapy in vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-12-SCI-12
Author(s):  
Karin Vanderkerken ◽  
Kim De Veirman ◽  
Ken Maes ◽  
Eline Menu ◽  
Elke De Bruyne

Apoptosis plays a key role, not only in normal homeostasis but also in protection against genomic instability. Protection against apoptosis is a hallmark of cancer and is mainly regulated by the overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-Xl or Mcl-1. This results in increased survival of the tumor cells and resistance to therapy. This presentation will focus on MCL-1 (myeloid cell leukemia 1), its expression and its role as potential target in multiple myeloma (MM). MCL1 gene regions are one the most amplified gene regions in several human cancers and Mcl-1 activity is often associated with therapy resistance and relapse. Mcl-1 binds to and sequesters the pro-apoptotic BH3 proteins, thereby preventing apoptosis. Mcl-1 is overexpressed on MM cells from newly diagnosed patients compared to normal plasma cells and in MM cells at relapse. This overexpression is furthermore associated with a shorter survival of these patients. Increased Mcl-1 expression can result either from genetic lesions or by induction through interaction with the bone marrow microenvironment. Its expression is correlated with the molecular heterogeneity of the myeloma patients; while the CCDN1 group has high BCL2 and low MCL-1 expression; the MMSET and MAF group has high MCL-1 and low BCL2 expression. Unlike Bcl-2 and Bcl-Xl, Mcl-1 has a large unstructured aminoterminus and its activity is mainly dependent on posttranslational modifications. The bone marrow microenvironment, by producing high levels of interleukin 6, also induces the upregulation of Mcl-1. Furthermore, our group recently demonstrated that not only stromal cells in the bone marrow microenvironment, but also MDSC (myeloid derived suppressor cells) induce survival of MM cells by increasing Mcl-1 levels through the AMPK pathway. As such, these data suggest the potential therapeutic benefit of targeting Mcl-1 in MM patients. Developing the first-generation inhibitors appeared to be challenging, especially in view of the occurrence of unwanted off target effects. Recent preclinical data with new, selective Mcl-1 inhibitors show promising anti-tumor effects both in vitro and in in vivo myeloma models, either alone or in combination with the Bcl-2 selective inhibitor, venetoclax, especially as it was demonstrated that high levels of MCL-1 are associated with venetoclax resistance in MM. In addition, it was also shown that proteasome inhibition can trigger Mcl-1 accumulation, further pointing to the importance of Mcl-1 inhibition. Induction of NOXA, as an inhibitor of Mcl-1, is also suggested as a therapeutic option, especially in combinations with other drugs. Clinically, following preclinical results, several new Mcl-1 inhibitors have entered phase I trials. Most of them are still recruiting patients, and as such too early to have results. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4073-4073
Author(s):  
Varda Deutsch ◽  
Yona Farnoushi ◽  
Michal Cipok ◽  
Sigi Kay ◽  
Elizabeth Naparstek ◽  
...  

Abstract Abstract 4073 While new treatment options are available, multiple myeloma (MM) still remains an incurable malignancy of plasma cells with a grim prognosis. Practical in vivo models to study human MM may enable a better understanding of the biology of the disease, and better optimization of therapeutic strategies. The best current xenograft model, the immune-deficient NOD/SCID mice, recapitulates MM in vivo, however, the price is very costly and maintenance complex, with >1 month required to establish engraftment. Our goal was to develop a user friendly rapid alternative xenograft system for the preclinical assessment of MM growth and therapy. We recently described this new in-vivo system for studying human leukemia in the pre-immune turkey embryo 1,2. These embryos are inexpensive, require no maintenance, and are easily manipulated experimentally. Described here are the first attempts at application of this novel system to study MM and test therapies. Cell lines ARH-77 and CAG line and fresh patient cells (5 × 106/embryo) were injected IV into turkey egg chorioallantoic membrane veins on embryonic day E11. Engraftment of human cells in hematopoietic organs, bone marrow (BM) and liver was detected 7 days later (E18) by RTPCR, immunohistochemistry and flow cytometry and by circulating free light chain (6-25 mg/L) in the peripheral blood of 100% of the injected cell lines and 50% of patients myelomas. Treatment with Velcade (Bortezomib) or Revlimid IV on E13 (48 hours after MM cell injection), at drug levels that were precalibrated to be non-toxic to the developing embryonic BM, dramatically reduced engraftment, demonstrating the utility of this new model for testing drug activity in vivo. ARH-77 cells, detected by flow cytometry of the embryonic BM cells with anti-human CD19, CD38 and CD138, were inhibited from 8.5% engraftment to 0.72% after a single Velcade treatment, with an 18 fold decrease compared to untreated embryos in the ratio of human to avian cells in BM tissue. determined by Q-RT-PCR analysis of human alpha satellite and avian GAPDH DNA normalized per cell. Very similar results were obtained with Revlimid. The results presented suggest that with further work the turkey embryo model may provide an affordable, rapid and practical xenograft system in vivo for studying the biology of MM, for affordably testing MM therapies, as well for developing a new method for individualized patient screening for response or resistance to particular therapeutic agents. 1. Taizi M, Deutsch VR, Leitner A, Ohana A, Goldstein RS. A novel and rapid in vivo system for testing therapeutics on human leukemias. Exp Hematol. 2006;34:1698-1708. 2. Grinberg I, Reis A, Ohana A, et al. Engraftment of human blood malignancies to the turkey embryo: a robust new in vivo model. Leuk Res. 2009;33:1417-1426. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Chi-Hyun Ahn ◽  
Won Woo Lee ◽  
Yun Chan Jung ◽  
Ji-Ae Shin ◽  
Kyoung-Ok Hong ◽  
...  

AbstractTW-37 is a small molecule B cell lymphoma-2 (Bcl-2) homology 3 mimetic with potential anticancer activities. However, the in vivo anti-cancer effect of TW-37 in human oral cancer has not been properly studied yet. Here, we attempted to confirm antitumor activity of TW37 in human oral cancer. TW-37 significantly inhibited cell proliferation and increased the number of dead cells in MC-3 and HSC-3 human oral cancer cell lines. TW-37 enhanced apoptosis of both cell lines evidenced by annexin V/propidium iodide double staining, sub-G1 population analysis and the detection of cleaved poly (ADP-ribose) polymerase and caspase-3. In addition, TW-37 markedly downregulated the expression of Bcl-2 protein, while not affecting Bcl-xL or myeloid cell leukemia-1. In vivo, TW-37 inhibited tumor growth in a nude mice xenograft model without any significant liver and kidney toxicities. Collectively, these data reveal that TW-37 may be a promising small molecule to inhibit human oral cancer.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4501-4501
Author(s):  
Syed Mehdi ◽  
Ying-Zhi Xu ◽  
Leonard Shultz ◽  
Samantha L. Kendrick ◽  
Donghoon Yoon

Abstract Introduction DLBCL is a commonly diagnosed, aggressive non-Hodgkin's lymphoma with ~40% of patients experiencing refractory or relapsed disease. Development of alternative therapies that target molecular features defining these unresponsive tumors is an active area of research to significantly advance the field and improve these patient's clinical management. However, few DLBCL animal models exist to test the efficacy of newly developed treatments, and are restricted to transgenic or xenograft mice that often fail to recapitulate the heterogeneous sub-classifications of this complex disease. While transgenic mice allow for spontaneous tumor formation, these models rely on inducing expression of specific oncogenes that drive a select group of DLBCL. The xenograft model offers several advantages, such as reproducing late-stage disease and shortening the model development time, but consist of implanting the tumor cells in a localized region or subcutaneously into immune-deficient mice. Despite some benefits of the transplant approach, these models are limited by their engraftment reproducibility and interactions with host micro-environments. Here, we explored the utility of humanizing Nod-Scid-IL2Rg null (NSG) mouse strains with factors associated with enhancing myeloid and lymphoma cell growth to establish a pipeline for rapid, reliable generation of in vivo DLBCL models. Methods We transduced the well-established human DLBCL cells, U2932, with the luciferase (Luc)-EGFP gene. The Luc-expressing (U2932-Luc) tumor cells were sorted for GFP positivity (GFP +) and expanded. The U2932-Luc cells (1 x 10 6/100µl PBS) were injected IV via tail vein into 8~12-week-old mice of various humanized NSG strains (representing equal numbers of each sex). NSG mice were humanized by transgenic expression of human cytokines (either human IL6 alone or IL6 plus SCF, GM-CSF, and IL-3) with the CMV promoter. Each experiment included of U2932-Luc cell transplanted group and control groups. We assessed U2932-Luc cell engraftment and growth by weekly in vivo imaging (IVIS 200 Imager, Perkin Elmer). To evaluate the organ specific engraftment/progression, we confirmed engraftment by bioluminescence imaging at the 2 nd week, then euthanized one mouse per week. At 15 minutes before euthansia, luciferin was injected via intraperitoneal injection. Following euthanasia, the organs were excised and underwent ex vivo IVIS imaging. The spleen, lungs, and liver were then fixed with 10% formalin and embedded in paraffin. Sections were stained with hematoxylin and eosin, and an anti-CD20 antibody to evaluate the tumor morphology using a Zeiss AXIO Imager M2 microscope (Zeiss, Nashville, TN). All other mice were monitored for survival and the median survival between the IL6 and IL6/SGM3 mice were compared using the Log-rank test. Results Similar to previously reported DLBCL humanized strain (MISTRG) (Hashwah, 2019), we used the IL6/SGM3 expressing strain. However, our studies also included the IL6 only humanized strain. We found that both the IL6 and IL6/SGM3 strains were highly permissive to DLBCL growth. The IL-6 strain exhibited a heightened growth of U2932 cells relative to the IL-6/SGM3 mice. As shown in Figure 1, the IL6 mice survived longer than IL6/SGM3 mice. Significant difference between the median survival of IL6 and IL6/SGM3 mice i.e. 48 days vs 42 days was observed (p &lt; 0.0482). The organ specific evaluation demonstrated that U2932-Luc cells were initially engrafted and grew in the lung, liver, and spleen. Subsequently, U2932 cells were found in the skeleton, ovary, and brain. Of note, we detected significantly enlargements of the kidney, spleen, and ovary at the terminal stage. Conclusions Our humanized mouse model approach of using U2932 human DLBCL cells transduced with the Luc gene in the NSG-IL6 and NSG-IL6/SGM3 mice reproduced the clinical features of an aggressive DLBCL that paralleled the original patient. This model will provide a new tool to enable expansion of patient samples while overcoming the current limitations of DLBCL xenografts and transgenic mice. The ability to maintain growth of patient-derived samples within clinically relevant locations has great potential to more accurately test patient-specific, personalized treatment strategies. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1821-1821
Author(s):  
Mario I Vega ◽  
Yijiang Shi ◽  
Patrick Frost ◽  
Sara Huerta-Yepez ◽  
Alan Lichtenstein

Multiple myeloma (MM) is a hematological disorder characterized by a proliferation of malignant monoclonal plasma cells in the bone marrow (BM) and / or in extramedullary sites. Despite recent progress in OS rates, MM remains an incurable disease and most patients will relapse and require treatment. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. It is known that the inhibition of Deptor results in the inhibition of the proliferation and induction of apoptosis in MM cells. In addition, high levels of Deptor are predictive of a poor response to conventional therapies, indicating that Deptor expression are important as a prognostic marker for patients with myeloma and is a possible therapeutic target. Our group previously identified a drug which prevents mTOR-Deptor binding (NSC126405) and induces cellular cytotoxicity in MM (Shi Y, et al 2016). In this study, we developed a new related chemical inhibitor (43 M) capable of inducing the inhibition of the mTOR / Deptor interaction and results in the negative regulation of Deptor that leads to the inhibition of proliferation and induces apoptosis in several MM cell lines. The cytotoxic effect of 43 M is not dependent of caspase activation and induces the activation of p70 and AKT (T308). This leads to the induction of apoptosis in MM cell lines and tumor cells derived from MM patients. The degradation of Deptor induced by 43 M is dependent on the proteasome complex since it was prevented in the presence of MG132. In vivo, 43 M prevents the expression of Deptor in a xenograft tumor, and delayed tumor growth and interestingly, induces the eradication of tumors in 40% of mice in a murine model of MM, without significant toxic implications. Recent studies show that Deptor expression protects MM cells against Bortezomib treatment, suggesting that anti-Deptor drugs can synergize with proteasome inhibitors (PIs). However, the combination of 43 M + Bortezomib was not synergistic, and was antagonistic in vitro. These results are probably due to the prevention of the proteasomal degradation of Deptor, suggesting a possible use of the 43 M inhibitor in MM in the absence of the current PIs. This study describes for the first time the possible role of Deptor as a therapeutic target using a chemical inhibitor capable of degrading and inducing a cytotoxic effect in MM cell lines. In addition, Deptor is reported as an important therapeutic target in an in vivo MM model. Shi Y, Daniels-Wells TR, Frost P, Lee J, Finn RS, Bardeleben C, Penichet ML, Jung ME, Gera J, Lichtenstein A. Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells. Cancer Res. 2016 Oct 1;76(19):5822-5831 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1466-1466
Author(s):  
Reuben M Tooze ◽  
Matthew A Care ◽  
David R Westhead ◽  
Gina M Doody

Abstract Abstract 1466 Poster Board I-489 B-lymphocyte induced maturation protein 1 (BLIMP-1) has been defined as a key driver of the genetic reprogramming during differentiation of B-cells to plasma cells. Frequent inactivation of PRDM1, the BLIMP-1 gene, in diffuse large B-cell lymphoma (DLBCL) indicates that loss of function is an important event in lymphomagenesis. Only a limited set of direct BLIMP-1 target genes have been defined. In order to better understand the function of human BLIMP-1 in differentiation and malignancy we have established a more comprehensive set of occupied promoters. These data provide an extended view of the regulatory network controlled by BLIMP-1, and identify novel sets of targets involved in transcription and immune response. The composition of occupied promoters identifies complexity in BLIMP-1 binding motif selection, and substantial overlap between BLIMP-1 sites and Interferon regulatory factor (IRF) elements. Consistent with active competition between BLIMP-1 and IRFs, target genes associated with such overlapping motifs are found to be preferentially induced in response to BLIMP-1 knockdown. Finally BLIMP-1 targets are found to include key components of DLBCL gene expression signatures. This map of BLIMP-1 occupied promoters thus illuminates key aspects of function in normal and malignant cell biology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3731-3731 ◽  
Author(s):  
Ryohei Kozaki ◽  
Toshio Yoshizawa ◽  
Shuji Tohda ◽  
Tomoko Yasuhiro ◽  
Shingo Hotta ◽  
...  

Abstract Abstract 3731 Purpose: ONO-WG-307 is a small molecule inhibitor that covalently binds to Btk. Signals from B cell receptors (BCR) play a central role in signal transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. BCR signaling is implicated in the survival of malignant B cells and recent studies indicate that targeting Btk, an essential component of the BCR pathway, may be effective in the treatment of B-cell lymphoma. The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis and new therapies, preferably chemo-sparing therapies, or as add-on to existing treatment regimens are required to help treat patients with ABC-DLBCL. Therefore, Btk constitutes an interesting therapeutic target, thus the activity of ONO-WG-307 was evaluated in an ABC-DLBCL xenograft model. Methods: Tumor cells (TMD-8) were implanted subcutaneously into female SCID mice. Tumors were allowed to grow to a volume of 100–200 mm3 before the mice were randomized into groups based on tumor size. ONO-WG-307 was administered orally at doses up to 10 mg/kg bid. Tumors were measured two or three times weekly after initiation of treatment, and tumor volumes were determined using the formula volume (=width2xlength)/2. Animals were euthanized when the tumors reached a maximum volume of 2,000 mm3 or after a maximum period of 2 months. In parallel, an exploratory pharmacodynamic marker of Btk inhibition (Phosphorylated-Btk [P-Btk]) was also investigated in vivo. Results: Treatment with ONO-WG-307 resulted in a dose-dependent inhibition of tumor growth in a TMD-8 xenograft model. Furthermore, parallel analysis of a pharmacodynamic marker, P-Btk, supported that Btk was inhibited and the level of P-Btk inhibition was correlated with the decreased tumor volumes observed in the TMD-8 model. Conclusion: ONO-WG-307 is a highly potent and selective oral Btk inhibitor with evidence of efficacy in the ABC-DLBCL xenograft model, with Btk inhibition further supported using a PD marker. Given the need to treat and overcome disease resistance especially in ABC-DLBCL, the use of a Btk inhibitor is a novel, mechanistic approach to treating B cell malignancies. Additional work is underway, combining ONO-WG-307 with chemotherapy and other targeted agents. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document