A Dynamic Intron Retention Program in the Mammalian Megakaryocyte and Erythrocyte Lineages

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2380-2380
Author(s):  
Christopher R Edwards ◽  
Rob Middleton ◽  
Xiuli An ◽  
Tejaswini Mishra ◽  
Narla Mohandas ◽  
...  

Abstract Intron retention (IR), the least studied form of alternative splicing, has recently been shown to have important biological roles in a variety of cell types. While it can alter a gene's protein-coding sequence, it is becoming particularly well-known for its potential to impact gene expression by destabilizing mRNAs through the nonsense-mediated decay pathway or by promoting their retention in the nucleus. A complex, dynamic, and biologically important IR program has been described in maturing mammalian granulocytes, but it is unknown whether IR occurs broadly in other hematopoietic lineages. We therefore globally assessed IR in the mammalian erythroid and megakaryocyte lineages. Intron Retention Finder, a bioinformatics tool that measures IR in RNA-seq datasets, was used to analyze IR in primary cells of the erythroid and megakaryocyte lineages as well as their common progenitor cells. Both lineages exhibit an extensive differential IR program involving hundreds of introns and genes. Complex IR patterns were seen in murine erythropoiesis from the megakaryocytic-erythroid branch point throughout the terminal maturation stages. Within the terminally differentiating proerythroblast to orthochromatic erythroblast stages, hundreds of introns saw their retention level increase as cells differentiate while a smaller set exhibited an opposing trend. Similarly complex patterns including a dramatic IR increase in orthochromatic erythroblasts were observed during human terminal erythroid differentiation, but not involving the murine orthologous introns or genes. Despite the common origin of erythroid cells and megakaryocytes and their overlapping gene expression patterns, the megakaryocytic IR program is entirely distinct from that of the erythroid lineage with regards to introns, genes, and affected gene ontologies. This suggests that the dynamic IR patterns are not simply the result of general maturational changes, but rather may arise via lineage-specific mechanisms. Importantly, we observed an inverse relationship between IR and gene expression changes, supporting the hypothesis that IR serves to regulate mRNA levels. Our findings add a new dimension to the megakaryocyte and erythroid transcription programs by expanding the mechanisms of gene control to include this understudied form of alternative splicing. Disclosures No relevant conflicts of interest to declare.

2010 ◽  
Vol 38 (2) ◽  
pp. 667-671 ◽  
Author(s):  
Craig G. Simpson ◽  
Sujatha Manthri ◽  
Katarzyna Dorota Raczynska ◽  
Maria Kalyna ◽  
Dominika Lewandowska ◽  
...  

AS (alternative splicing) is a post-transcriptional process which regulates gene expression through increasing protein complexity and modulating mRNA transcript levels. Regulation of AS depends on interactions between trans-acting protein factors and cis-acting signals in the pre-mRNA (precursor mRNA) transcripts, termed ‘combinatorial’ control. Dynamic changes in AS patterns reflect changes in abundance, composition and activity of splicing factors in different cell types and in response to cellular or environmental cues. Whereas the SR protein family of splicing factors is well-studied in plants, relatively little is known about other factors influencing the regulation of AS or the consequences of AS on mRNA levels and protein function. To address fundamental questions on AS in plants, we are exploiting a high-resolution RT (reverse transcription)–PCR system to analyse multiple AS events simultaneously. In the present paper, we describe the current applications and development of the AS RT–PCR panel in investigating the roles of splicing factors, cap-binding proteins and nonsense-mediated decay proteins on AS, and examining the extent of AS in genes involved in the same developmental pathway or process.


Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 513-524 ◽  
Author(s):  
Zheng Lian ◽  
Le Wang ◽  
Shigeru Yamaga ◽  
Wesley Bonds ◽  
Y. Beazer-Barclay ◽  
...  

Abstract Although the mature neutrophil is one of the better characterized mammalian cell types, the mechanisms of myeloid differentiation are incompletely understood at the molecular level. A mouse promyelocytic cell line (MPRO), derived from murine bone marrow cells and arrested developmentally by a dominant-negative retinoic acid receptor, morphologically differentiates to mature neutrophils in the presence of 10 μM retinoic acid. An extensive catalog was prepared of the gene expression changes that occur during morphologic maturation. To do this, 3′-end differential display, oligonucleotide chip array hybridization, and 2-dimensional protein electrophoresis were used. A large number of genes whose mRNA levels are modulated during differentiation of MPRO cells were identified. The results suggest the involvement of several transcription regulatory factors not previously implicated in this process, but they also emphasize the importance of events other than the production of new transcription factors. Furthermore, gene expression patterns were compared at the level of mRNA and protein, and the correlation between 2 parameters was studied.


2013 ◽  
Author(s):  
Kristoffer Vitting-Seerup ◽  
Bo T Porse ◽  
Albin Sandelin ◽  
Johannes E Waage

With the advent of increasing depth and decreasing costs in digital gene expression technologies exemplified by RNA-sequencing, researchers are now able to profile the transcriptome with unprecedented detail. These advances not only allow for precise approximation of gene expression levels, but also for characterization of alternative isoform usage/switching between samples. Recent software improvements in full transcript deconvolution prompted us to develop spliceR , an R package for classification of alternative splicing. spliceR labels isoforms based on fully assembled transcripts, detecting single- and multiple exon skipping, alternative donor or acceptor sites, intron retention, alternative first or last exon usage, and mutually exclusive exon events. Alongside, event spliced-in/out values are calculated for effective post-filtering, and genomic coordinates of differentially spliced elements are annotated for downstream sequence analysis. Furthermore, spliceR has the option to predict the coding potential and thereby the nonsense mediated decay (NMD) sensitivity of transcripts based on stop codon position.


2022 ◽  
Author(s):  
Yichen Gao ◽  
Ai-Ping Pang ◽  
Leyao Ma ◽  
Haiyan Wang ◽  
Samran Durrani ◽  
...  

Abstract Background Knowledge on regulatory networks associated with cellulase biosynthesis is prerequisite for exploitation of such regulatory systems in ehancing cellulase production with low cost. The biological functions of intron retention (IR) and nonsense-mediated mRNA decay (NMD) in filamentous fungi is lack of study, let alone their roles in cellulase biosynthesis. Result We found that major cellulase genes (cel7a, cel7b, and cel3a) exhibited concomitant decrease in IR rates and increase in their gene expression in T. reesei under cellulase-producing condition (cellulose and lactose) that was accompanied with a more active NMD pathway, as compared to non cellulase-producing condition (glucose). In the presence of the NMD pathway inhibitor that successfully repressed the NMD pathway, the mRNA levels of cellulase genes were sharply down-regulated, but the rates of IR in these genes were significantly up-regulated. Consistently, the cellulase activities were severely inhibited. In addition, the NMD pathway inhibitor caused the downregulated mRNA levels of two important genes of the target of rapamycin (TOR) pathway, trfkbp12 and trTOR1. The absence of gene trfkbp12 made the cellulase production in T. reesei more sensitive to the NMD pathway inhibitor. Conclusion All these findings suggest that the IR of cellulase genes regulates their own gene expression by coupling with the NMD pathway, which might involve the TOR pathway. Our results provide better understanding on intron retention, the NMD pathway, and cellulase production mechanism in filamentous fungi.


Blood ◽  
2011 ◽  
Vol 118 (16) ◽  
pp. e128-e138 ◽  
Author(s):  
Piu Wong ◽  
Shilpa M. Hattangadi ◽  
Albert W. Cheng ◽  
Garrett M. Frampton ◽  
Richard A. Young ◽  
...  

Abstract It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yuanyuan Li ◽  
Ping Luo ◽  
Yi Lu ◽  
Fang-Xiang Wu

Abstract Background With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different types of cells and the instability of gene expression. One way of overcoming this problem is to group similar, related single cells together by the means of various clustering analysis methods. Although some methods such as spectral clustering can do well in the identification of cell types, they only consider the similarities between cells and ignore the influence of dissimilarities on clustering results. This methodology may limit the performance of most of the conventional clustering algorithms for the identification of clusters, it needs to develop special methods for high-dimensional sparse categorical data. Results Inspired by the phenomenon that same type cells have similar gene expression patterns, but different types of cells evoke dissimilar gene expression patterns, we improve the existing spectral clustering method for clustering single-cell data that is based on both similarities and dissimilarities between cells. The method first measures the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the incidence matrix to perform dimensionality reduction and employs the K-means algorithm in the low dimensional space to achieve clustering. The proposed improved spectral clustering method is compared with the conventional spectral clustering method in recognizing cell types on several real single-cell RNA-seq datasets. Conclusions In summary, we show that adding intercellular dissimilarity can effectively improve accuracy and achieve robustness and that improved spectral clustering method outperforms the traditional spectral clustering method in grouping cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


Endocrinology ◽  
1999 ◽  
Vol 140 (5) ◽  
pp. 2110-2116 ◽  
Author(s):  
Roni Mamluk ◽  
Nitzan Levy ◽  
Bo Rueda ◽  
John S. Davis ◽  
Rina Meidan

Abstract Our previous studies demonstrated that endothelin-1 (ET-1), a 21-amino acid vasoconstrictor peptide, has a paracrine regulatory role in bovine corpus luteum (CL). The peptide is produced within the gland where it inhibits progesterone production by acting via the selective type A endothelin (ETA) receptors. The present study was designed to characterize ETA receptor gene expression in different ovarian cell types and its hormonal regulation. ETA receptor messenger RNA (mRNA) levels were high in follicular cells as well as in CL during luteal regression. At this latter stage, high ETA receptor expression concurred with low prostaglandin F2α receptor mRNA. The ETA receptor gene was expressed by all three major cell populations of the bovine CL; i.e. small and large luteal cells, as well as in luteal endothelial cells. Among these various cell populations, the highest ETA receptor mRNA levels were found in endothelial cells. cAMP elevating agents, forskolin and LH, suppressed ETA receptor mRNA expression in luteinized theca cells (LTC). This inhibition was dose dependent and was evident already after 24 h of incubation. In luteinized granulosa cells (LGC), 10 and 100 ng/ml of insulin-like growth factor I and insulin (only at a concentration of 2000 ng/ml) markedly decreased ETA receptor mRNA levels. In both LGC and LTC there was an inverse relationship between ETA receptor gene expression and progesterone production; insulin (in LGC) and forskolin (in LTC) enhanced progesterone production while inhibiting ETA receptor mRNA levels. Our findings may therefore suggest that, during early stages of luteinization when peak levels of both LH and insulin-like growth factor I exist, the expression of ETA receptors in the gland are suppressed. This study demonstrates physiologically relevant regulatory mechanisms controlling ETA receptor gene expression and further supports the inhibitory role of ET-1 in CL function.


2004 ◽  
Vol 16 (8) ◽  
pp. 763 ◽  
Author(s):  
Han-Seung Kang ◽  
Chae-Kwan Lee ◽  
Ju-Ran Kim ◽  
Seong-Jin Yu ◽  
Sung-Goo Kang ◽  
...  

In the present study, differential gene expression in the uteri of ovariectomised (OVX) and pro-oestrous rats (OVX v. pro-oestrus pair) was investigated using cDNA expression array analysis. Differential uterine gene expression in OVX rats and progesterone (P4)-injected OVX rats (OVX v. OVX + P4 pair) was also examined. The uterine gene expression profiles of these two sets of animals were also compared for the effects of P4 treatment. RNA samples were extracted from uterine tissues and reverse transcribed in the presence of [α32P]-dATP. Membrane sets of rat arrays were hybridised with cDNA probe sets. Northern blot analysis was used to validate the relative gene expression patterns obtained from the cDNA array. Of the 1176 cDNAs examined, 23 genes showed significant (>two-fold) changes in expression in the OVX v. pro-oestrus pair. Twenty of these genes were upregulated during pro-oestrus compared with their expression in the OVX rat uterus. In the OVX v. OVX + P4 pair, 22 genes showed significant (>two-fold) changes in gene expression. Twenty of these genes were upregulated in the OVX + P4 animals. The genes for nuclear factor I–XI, afadin, neuroligin 2, semaphorin Z, calpain 4, cyclase-associated protein homologue, thymosin β-4X and p8 were significantly upregulated in the uteri of the pro-oestrus and OVX + P4 rats of both experimental pairs compared with the OVX rat uteri. These genes appear to be under the control of P4. One of the most interesting findings of the present study is the unexpected and marked expression of the neuroligin 2 gene in the rat uterus. This gene is expressed at high levels in the central nervous system and acts as a nerve cell adhesion factor. According to Northern blot analysis, neuroligin 2 gene expression was higher during the pro-oestrus and metoestrus stages than during the oestrus and dioestrus stages of the oestrous cycle. In addition, neuroligin 2 mRNA levels were increased by both 17β-oestradiol (E2) and P4, although P4 administration upregulated gene expression to a greater extent than injection of E2. These results indicate that neuroligin 2 gene expression in the rat uterus is under the control of both E2 and P4, which are secreted periodically during the oestrous cycle.


Sign in / Sign up

Export Citation Format

Share Document