scholarly journals The KDM3A-KLF2-IRF4 Axis Maintains Myeloma Cell Survival

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3633-3633
Author(s):  
Hiroto Ohguchi ◽  
Teru Hideshima ◽  
Manoj Bhasin ◽  
Gullu Gorgun ◽  
Loredana Santo ◽  
...  

Abstract Histone methylations are tightly regulated by a balance between methyltransferases and demethylases that mediate the addition and removal of these modifications. Importantly, dysregulation of histone methylation is implicated in pathogenesis of cancers, including multiple myeloma (MM). For example, the t(4;14) (p16;q32) is present in 15 - 20% of MM patients and results in overexpression of WHSC1, a histone H3 lysine 36 (H3K36) methyltransferase. On the other hand, approximately 10% of MM patients without the t(4;14) have inactivating mutations in KDM6A, a H3K27 demethylase. KDM3A is a Jumonji C-domain-containing histone demethylase which catalyzes removal of H3K9 mono- and dimethylation (H3K9me1 and H3K9me2). KDM3A is implicated in pathogenesis of different types of cancers. Here we investigated the biological impact of KDM3A in MM. KDM3A expression was significantly elevated in MM patient samples compared to normal plasma cells in publicly available dataset (GSE5900, GSE6691). To evaluate the functional role of KDM3A, shRNAs targeting KDM3A were transduced into MM cell lines: knockdown of KDM3A significantly inhibited MM cell growth (RPMI8226, MM.1S, U266, H929) in vitro and in xenograft model (MM.1S). Apo2.7 staining showed that apoptotic cells were significantly increased after knockdown of KDM3A. We next examined gene expression profiles after knockdown of KDM3A in RPMI8226 cells. With a cutoff of > 1.5-fold downregulation, a total of 305 probe sets were downregulated in KDM3A-knockdown cells relative to control cells. Among putative KDM3A targets, a gene of particular interest is KLF2 which plays a key role in maintenance of B cell and plasma cell phenotype, and function. Another intriguing gene is IRF4, given its known crucial role in MM cell survival. We confirmed that expression of KLF2 and IRF4 was downregulated after knockdown of KDM3A by quantitative realtime PCR and immunoblots in RPMI82226, MM.1S, and U266 cells. KDM3A binding to KLF2 and IRF4 core promoters was demonstrated by chromatin immunoprecipitation (ChIP) assay in RPMI8226 cells. Moreover, knockdown of KDM3A increased H3K9me1 and me2 levels at both promoter regions, indicating that KDM3A directly regulates KLF2 and IRF4 expression by removing H3K9 methylation marks at their promoters in MM cells. shRNAs targeting KLF2 were next transduced into MM cell lines: silencing of KLF2 significantly reduced cell growth of MM cell lines, associated with decreased IRF4. Promoter reporter assays using human IRF4 promoter showed that KLF2 significantly increased luciferase expression in a dose-dependent manner. Moreover, ChIP assay showed that KLF2 bound to IRF4 promoter in RPMI8226 cells. Since transcription factors could form an autoregulatory feedback loop, we hypothesized that IRF4 might regulate KLF2 expression. As expected, knockdown of IRF4 downregulated KLF2 expression at both the mRNA and protein levels in 3 MM cell lines. In addition, ChIP assays demonstrated that IRF4 bound to KLF2 second intron that contains tandem IRF4 motifs in RPMI8226 cells. Collectively, these results suggest that KLF2 activates IRF4 expression and vice versa, forming an autoregulatory loop in MM cells. KLF2 has been reported to control homing of plasma cells to the bone marrow; we therefore hypothesized that KDM3A-KLF2-IRF4 axis might regulate adhesion and homing of MM cells to the bone marrow. Importantly, knockdown of KDM3A, KLF2, or IRF4 decreased adhesion of 3 MM cell lines to bone marrow stromal cells. Furthermore, bone marrow homing of MM.1S cells was significantly reduced after knockdown of KDM3A, KLF2, or IRF4 in a murine xenograft MM model, indicating that KDM3A-KLF2-IRF4 axis regulates, at least in part, MM cell adhesion and homing to the bone marrow. In conclusion, our study demonstrated that KDM3A is a crucial epigenetic regulator of MM cell survival, and that inhibition of KDM3A represents a novel therapeutic strategy in MM. Disclosures Raje: Amgen: Consultancy; Takeda: Consultancy; Novartis: Consultancy; Celgene Corporation: Consultancy; BMS: Consultancy; Acetylon: Research Funding; Eli Lilly: Research Funding; Onyx: Consultancy; AstraZeneca: Research Funding; Millenium: Consultancy. Richardson:Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium Takeda: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees. Harigae:Chugai Pharmaceutical Co., Ltd.: Research Funding. Anderson:Oncopep: Equity Ownership; Gilead: Consultancy; BMS: Consultancy; Millennium: Consultancy; Celgene: Consultancy; Acetylon: Equity Ownership.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 791-791 ◽  
Author(s):  
Diana Cirstea ◽  
Teru Hideshima ◽  
Loredana Santo ◽  
Samantha Pozzi ◽  
Sonia Vallet ◽  
...  

Abstract Abstract 791 Targeting PI3K/Akt/mTOR signaling is among one of the promising therapeutic strategies in multiple myeloma (MM), since it facilitates MM cell survival and development of drug resistance in the context of the bone marrow microenvironment. Specifically, regulation of PI3K activity, which mediates MM cell growth and drug resistance, by mTOR complex 1 (mTORC1) provides the rationale for use of rapamycin analogs for MM treatment. However, rapamycin alone fails to overcome bone marrow-induced proliferation of MM cells, at least in part, because of the mTORC1-dependent feedback loops which activate PI3K/Akt. More recently, extensive studies of the mTOR network have identified mTORC2 as a “rapamycin-insensitive” complex. Sharing mTOR kinase as a common catalytic subunit, mTORC1 and mTORC2 mediate two distinct pathways: mTORC1 controls cell growth by phosphorylating key regulators of protein synthesis S6 kinase 1 (P70S6K) and the eIF-4E-binding protein 1 (4E-BP1); mTORC2 modulates cell survival and drug resistance by phosphorylating target proteins including Akt and serum/glucocorticoid regulated kinase 1(SGK1)/N-myc downstream regulated 1 (NDRG1). Moreover, studies have also revealed overexpression of a novel mTOR-interacting protein DEP domain containing 6 (DEPTOR), which can modulate mTOR activity and promote PI3K/mTORC2 signaling in primary MM tumor cells and in MM cell lines while mTORC1 remains silenced. We therefore hypothesized that targeting mTOR may disrupt DEPTOR/mTOR interaction and silence mTORC1/mTORC2 signaling, thereby overcoming mTOR resistance in MM cells. To confirm this idea, we used AZD8055, an orally bioavailable selective ATP-competitive mTOR kinase inhibitor, in our MM preclinical models. AZD8055- treatment of MM.1S inhibited phosphorylation of both mTORC1 and mTORC2 substrates: P70S6K; 4E-BP1 including the rapamycin-resistant T37/46 – downstream targets of mTORC1; as well as Akt and NDRG1 – effectors of mTORC2 refractory to rapamycin. Interestingly, AZD8055-mediated mTORC1/mTORC2 downregulation was associated with DEPTOR upregulation, which is consistent with the finding that DEPTOR expression is negatively regulated by mTORC1 and mTORC2. Moreover, inhibition of mTORC1 alone by rapamycin resulted in reduction of DEPTOR, associated with Akt activation. Furthermore, we observed that DEPTOR expression was decreased in MM.1S cells cultured with IL-6, IGF-1 or bone marrow stromal cells (BMSCs), which stimulate PI3K/Akt/mTOR signaling, evidenced by enhanced P70S6K and Akt phosphorylation. Unlike rapamycin, AZD8055 reversed those effects and inhibited MM.1S proliferation, even in the presence of these cytokines or BMSCs. AZD8055-induced growth inhibition was associated with apoptosis, evidenced by caspase-9, -3 and PARP cleavage in a time-dependent fashion (80% apoptotic cells at 72 hour culture as detected by Annexin V/PI staining). Moreover, AZD8055 induced cytotoxicity even in rapamycin resistant MM cell lines and primary patient MM cells. Finally, AZD8055 demonstrated significant anti-MM activity in an in vivo human MM cell xenograft SCID mouse model. Taken together, our data show that disruption of DEPTOR/mTORC1/mTORC2 cascade in MM cells results in significant anti-tumor effects, providing the framework for future clinical trials of AZD8055 to improve patient outcome in MM. Disclosures: Guichard: AstraZeneca: Employment, Shareholder AstraZeneca. Anderson:Millenium: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy; Merck: Consultancy; BMS: Consultancy; Acetylon: Membership on an entity's Board of Directors or advisory committees, Ownership interest (inc stock options) in a Start up company. Raje:AstraZeneca: Research Funding; Acetylon: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2686-2686
Author(s):  
Yao Yao ◽  
Tommaso Perini ◽  
Mehmet K. Samur ◽  
Raphael Szalat ◽  
Moritz Binder ◽  
...  

Abstract Multiple myeloma (MM) is a complex and heterogenous disease which is dependent on the surrounding microenvironment for growth and survival. In MM, dysregulation of transcriptional control is a major driver of tumor transformation and progression. To evaluate transcriptional programs activated in MM cells in the context of the bone marrow milieu, we have performed extensive transcriptomic analysis by RNA-seq and ATAC-seq using bone marrow stromal cells (BMSC) derived from MM patients and stromal cell line (HS5) in co-culture with various MM cell lines. We observed that both cell-cell interactions and soluble factors secreted by BMSC or HS5 cells significantly downregulated expression of Inhibitor of DNA Binding 2 (ID2), while footprint analysis of the open chromatin regions in MM cells upon interaction with BMSC revealed enrichment for binding motifs of the TCF family of transcription factors (E proteins). Inhibitors of DNA binding (ID) proteins control crucial transcriptional programs in B cell maturation via their heterodimerization with E proteins which are members of the basic helix-loop-helix (bHLH) class I family of transcription factors, repressing their DNA binding and therefore transcriptional activity. We found that ID2 expression is significantly lower in primary CD138+ MM cells from patients compared to normal plasma cells (NPCs). Moreover, we have previously implicated the B-cell factor TCF3 as a novel MM dependency. Using MM cell lines and primary samples, we observed elevated enhancer activity at TCF3 locus in primary malignant plasma cells compared to NPCs, which resulted in significant upregulation of TCF3 expression in MM patients. We also showed that TCF3 is regulated by a large proximal enhancer that is bound by MYC and is highly sensitive to chemical perturbation of enhancer co-activators such as BRD4. Genetic perturbation of TCF3 confirmed its critical role on MM cell growth and viability especially in IgH MYC translocated MM cell lines. We here further explored the role of ID2-TCF3 axis and the hypothesis that lower expression of ID2 drives higher TCF3 activity in MM cells, which is further enhanced in presence of the bone marrow microenvironment. Genetic modulation of ID2 significantly affected MM cell viability, with MM cells ectopically expressing ID2 displaying a cell growth arrest even in the presence of the supportive BM milieu. To define the mechanism of the observed oncosuppressive role of ID2 in MM, which is in line with preliminary observations in other hematological malignancy but in contrast with the pro-tumoral role described in solid tumors, we first performed immunoprecipitation of ID2 followed by mass spectrometry in 3 MM cell lines, and identified a very consistent and specific interaction with E proteins TCF3 and TCF12. Next, to explore the transcriptional programs dependent on ID2 we performed RNA-seq of 2 MM cell lines after ID2 overexpression. In line with our in vitro data, gene ontology and gene set enrichment analysis showed a significant downregulation of genes involved in E2F pathway, cell cycle progression and regulation of gene transcription. Interestingly, among the known TCF3 targets in B cells, only XBP-1 was significantly downregulated in MM cells after ID2 overexpression, suggesting the existence of a cell-specific TCF3 dependent transcriptional program in MM. Indeed, ATAC-seq experiments revealed ID2 overexpression led to a significant decrease of TCF3 binding motifs in open chromatin regions, confirming the relevance of ID2 in regulating TCF3 transcriptional activity in MM. In conclusion, while both E and ID proteins have been implicated in malignant transformation, their role in supporting MM transcriptional deregulation and tumor growth in the context of the microenvironment is being defined. Here, we have identified ID2 as a major regulator of the TCF3 dependent transcriptional program in MM, whose downregulation is essential to maintain MM proliferation and to mediate the benefits induced by MM-stroma interaction. Disclosures Anderson: Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees. Munshi: Janssen: Consultancy; Amgen: Consultancy; Takeda: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Celgene: Consultancy; Karyopharm: Consultancy; Adaptive Biotechnology: Consultancy; Novartis: Consultancy; Legend: Consultancy; Pfizer: Consultancy; Bristol-Myers Squibb: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1815-1815
Author(s):  
Patricia Maiso ◽  
Yi Liu ◽  
Abdel Kareem Azab ◽  
Brittany Morgan ◽  
Feda Azab ◽  
...  

Abstract Abstract 1815 Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 (Raptor) and TORC2 (Rictor). TORC1 leads to the phosphorylation of p70S6 kinase and 4E- BP1, while TORC2 regulates phosphorylation of Akt and other kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin and its analogues have not shown significant activity in MM, likely due to the lack of inhibition of TORC2. In this study, we dissected the baseline activity of the PI3K/Akt/mTOR pathway TORC1/2 in MM cell lines with different genetic abnormalities. Methods: Eight different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, immunochemistry, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. In vivo homing was checked by in vivo flow. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: Raptor (TORC1) and Rictor (TORC2) knockdowns led to significant inhibition of proliferation of MM cells even in the presence of bone marrow stromal cells, this effect was also accompanied by inactivation of p-Akt, p-rS6 and p-4EBP1. We used INK128, a dual and selective TORC1/2 kinase inhibitor with similar effects to Raptor plus Rictor knockdown. We examined the protein expression levels of both mTOR complex and their downstream effectors in MM plasma cells from patients and cell lines. mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all samples. We showed that dual TORC1/2 inhibition is much more active than TORC1 inhibition alone (rapamycin) even in the presence of cytokines or stromal cells. INK128 induced cell cycle arrest, autophagy and apoptosis in cell lines and primary plasma cells even in the presence of bone marrow stromal cells (BMSCs). INK128 also showed a significant effect inhibiting cell adhesion in our in vivo homing model. Oral daily treatment with INK128 highly decreased the percentage of CD138+ tumor plasma cells in mice implanted with MM cells and reduced the levels of p-Akt and p-4EBP. These results suggest that potent and complete blockade of mTOR as part of TORC1 and TORC2 is potential therapeutic strategy to induce cell cycle arrest, apoptosis and disruption of MM cells interaction with the BM microenvironment. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Liu: Intellikine: Employment. Roccaro:Roche: Research Funding. Rommel:Intellikine: Employment. Ghobrial:Celgene: Consultancy; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1822-1822
Author(s):  
Cinzia Federico ◽  
Antonio Sacco ◽  
Katia Todoerti ◽  
Arianna Giacomini ◽  
Gaia C Ghedini ◽  
...  

The human fibroblast growth factor receptor (FGF-R) family plays an essential role in a wide range of cellular processes, such as cell growth, proliferation, differentiation, migration and survival. It has been reported that FGF-Rs are expressed in hematopoietic cells; and FGF/FGFR signaling deregulation is largely involved in hematologic malignancies, including Waldenström macroglobulinemia (WM). WM is still an incurable disease, and patients succumb due to disease progression. Therefore, novel therapeutics designed to specifically target deregulated signaling pathways in WM are required. We aimed to investigate the role of FGF/FGF-R system in FGF-dependent WM cell lines by using an anti-pan FGF trap molecule (NSC12), responsible for FGF/FGF-R blocking. We first interrogated the GSE9656 dataset in order to confirm the expression of FGFs and FGF-Rs in WM cells, demonstrating an enrichment of several FGF- and FGF-R-isoforms in primary WM patients' derived tumor cells compared to the normal cellular counterpart (P<0.05); and demonstrated the ability of NSC12 to inhibit FGF-secretion within the conditioned media of NCS12-treated WM cells, as shown by ELISA. Wide-transcriptome profiling of NSC12-treated WM cells (BCWM.1; MWCL1) revealed a significant inhibition of Myc-target related genes, coupled with silencing of genes involved in cell cycle progression, cell proliferation, PI3K-AKT-mTOR signaling, oxidative phosphorylation (Hallmark; FDR<0.25; P<0.05). This prompted us to evaluate the anti-tumor functional sequelae exerted by NSC12 in WM cells: NSC12 induced significant inhibition of WM cell growth (BCWM1 and WMCL1) in a dose-dependent fashion (0.1-10μM; IC50 ~3μM), even in the presence of bone marrow microenvironment. In addition, a significant effect was also observed in primary tumor cells from WM patients; while no effect was observed on healthy donor-derived peripheral blood mononuclear cells. The growth inhibitory effect was associated with induction of apoptotic cell death, caspase activation and PARP cleavage, as demonstrated by flow cytometry and western blot, respectively. Moreover, we also observed a NSC12 dose-dependent increase of mitochondrial reactive oxigen species (ROS), at protein level. Cell cycle analysis revealed a reduction of the S-phase and increase of G0/G1 phase. Mechanistically, NSC12 targeted WM cells by inhibiting MAPK, JAK/STAT3 and PI3K-Akt pathways known to be FGFRs-activated signaling cascades. Importantly, the same effect was maintained in WM cells even in the presence of the supporting BM microenvironment. Functional studies demonstrated the ability of NSC12 to impair the adhesion of both cell lines to the supportive primary bone marrow stromal cells, in vitro. NCS12-dependnet anti-WM activity was also tested in combination with bortezomib, carfilzomib, everolimus and ibrutinib: the combinatory treatment (48h) resulted in a more significant dose-dependent inhibition of WM cell survival and proliferation (P<0.05), thus suggesting the rational for combining FGF-blockade with proteasome-, mTOR-, or BTK-inhibitors. In vivo studies are being performed, in order to further corroborate the anti-WM activity of NSC12 using WM animal models. Disclosures Ronca: Associazione Italiana per la Ricerca sul Canctro (AIRC): Research Funding. Rossi:Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Mundipharma: Honoraria; BMS: Honoraria; Sandoz: Honoraria; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy; Roche: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Roccaro:AstraZeneca: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; European Hematology Association: Research Funding; Associazione Italiana per al Ricerca sul Cancro (AIRC): Research Funding; Transcan2-ERANET: Research Funding; AstraZeneca: Research Funding; European Hematology Association: Research Funding; Transcan2-ERANET: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2465-2465
Author(s):  
Jacqueline Martinez ◽  
Nathalie Javidi-Sharifi ◽  
Isabel English ◽  
Shelton A. Viola ◽  
Danielle Jorgens ◽  
...  

Abstract Introduction. Mutational activation of kinases is a frequent event in leukemia, however resistance to kinase inhibitors remains a clinical dilemma. There is considerable evidence that proteins expressed by the bone marrow microenvironment protect leukemia cells from the effects of therapy. We previously reported that fibroblast growth factor 2 (FGF2) from bone marrow stroma protected chronic myeloid leukemia (CML) cells in a paracrine fashion. FGF2 expression was significantly increased in the marrow stroma of resistant CML patients without kinase domain mutations and resistance could be overcome with concomitant inhibition of FGFR (Traer et al. Blood 2014). Furthermore, resistant patients with increased marrow FGF2 expression had decreased FGF2 after FGFR inhibition, suggesting FGF2 also acts as an autocrine growth factor for stroma. Recently we have found a similar increase in marrow FGF2 in acute myeloid leukemia with FLT3 internal tandem duplication (FLT3+ AML), suggesting a more general mechanism of resistance (submitted). Since FGF2-mediated resistance appears to be conserved, we investigated FGF2 paracrine protection and autocrine stimulation in more detail. Results. FGF2 is expressed by stromal cells and plays an active role in hematopoiesis, however FGF2 does not have a signal peptide and thus its mechanism of secretion remains controversial. We used the related human stromal cell lines HS-5 and HS-27 to investigate FGF2 secretion (HS-5 strongly expresses FGF2 whereas HS-27 does not). FGF2 was found by Western blot to be enriched in the extracellular vesicle (ECV) pellet after centrifugation at 100,000g. These findings were confirmed by Luminex multiplex cytokine assay, where FGF2 was found to be uniquely enriched in ECVs. In order to further purify the ECV fraction, we performed a sucrose step-gradient fractionation and Western blot analysis. FGF2 was enriched in the exosome fraction, along with exosomal markers CD9 and tsg-101, whereas extracellular matrix proteins and apoptotic bodies localized to different fractions. Exosomes also conferred to K562 CML cell lines and MOLM14 FLT3+ AML cell lines treated with BCR-ABL and FLT3 inhibitors, respectively. To evaluate if FGF2 was contained within exosomes, we treated HS-5 exosomes with proteinase-K to digest proteins outside of the lipid membrane and found that FGF2 is present both inside and outside of exosomes. Exosomes were labeled with a fluorescent dye (DiI) and incubated with K562 and MOLM cells. Microscopy demonstrated uptake of exosomes into the leukemia cells. Protection by FGF2-containing exosomes could be partially abrogated by PD173074, a selective FGFR inhibitor, suggesting that protection by exosomes is not mediated entirely by FGF2, and other components of exosomes such as miRNAs and other proteins confer protection as well. To investigate FGF2 autocrine stimulation of marrow stroma, HS-5 and HS-27 cells were treated with PD173074. Growth of HS-5 cells was attenuated by inhibition of FGFR, whereas HS-27 cells were relatively unaffected. Treatment with PD173074 also caused distinctive changes in the morphology of HS-5. We then investigated the effects of FGFR inhibitor on FGF2 and exosome secretion. Although the intracellular FGF2 was unchanged by PD173074, the amount of secreted exosomes was decreased, as measured by FGF2, CD9 and tsg-101 by Western blot. This reduction in secreted exosomes was confirmed by NanoSight analysis, where increasing concentrations of PD173074 led to a dose-dependent decrease in secreted vesicles (Figure 1) indicating that exosome secretion is regulated by FGFR activation Conclusion. FGF2 signaling is a conserved mechanism of resistance to targeted therapy in CML, FLT3+ AML and other malignancies. FGFR inhibition by PD173074 leads to 1) reduced autocrine expansion of FGF2-expressing stroma, 2) decreased secretion of FGF2-containing exosomes, and 3) attenuation of the exosome-mediated protection of leukemia cells. Our findings suggest that exosomes are important purveyors of protective signaling to leukemic blasts in leukemia microenvironment, and that FGFR-inhibition may be a clinically relevant option to modulate the marrow stroma and overcome microenvironment-mediated resistance. Figure 1. Figure 1. Disclosures Druker: Henry Stewart Talks: Patents & Royalties; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Cylene Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Oregon Health & Science University: Patents & Royalties; McGraw Hill: Patents & Royalties; Sage Bionetworks: Research Funding; Bristol-Myers Squibb: Research Funding; Roche TCRC, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Fred Hutchinson Cancer Research Center: Research Funding; Oncotide Pharmaceuticals: Research Funding; Novartis Pharmaceuticals: Research Funding; CTI Biosciences: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics, Inc (formerly Lorus): Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Millipore: Patents & Royalties; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy; ARIAD: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Rasoul Pourebrahimabadi ◽  
Zoe Alaniz ◽  
Lauren B Ostermann ◽  
Hung Alex Luong ◽  
Rafael Heinz Montoya ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease that develops within a complex microenvironment. Reciprocal interactions between the bone marrow mesenchymal stem/stromal cells (BM-MSCs) and AML cells can promote AML progression and resistance to chemotherapy (Jacamo et al., 2014). We have recently reported that BM-MSCs derived from AML patients (n=103) highly express p53 and p21 compared to their normal counterparts (n=73 p&lt;0.0001) (Hematologica, 2018). To assess the function of p53 in BM-MSCs, we generated traceable lineage specific mouse models targeting Mdm2 or Trp53 alleles in MSCs (Osx-Cre;mTmG;p53fl/fl and Osx-Cre;mTmG;Mdm2fl/+) or hematopoietic cells (Vav-Cre;mTmG;p53fl/fl and Vav-Cre;mTmG;Mdm2fl/+). Homozygote deletion of Mdm2 (Osx-Cre;Mdm2fl/fl) resulted in death at birth and displayed skeletal defects as well as lack of intramedullary hematopoiesis. Heterozygote deletion of Mdm2 in MSCs was dispensable for normal hematopoiesis in adult mice, however, resulted in bone marrow failure and thrombocytopenia after irradiation. Homozygote deletion of Mdm2 in hematopoietic cells (Vav-Cre;Mdm2fl/fl) was embryonically lethal but the heterozygotes were radiosensitive. We next sought to examine if p53 levels in BM-MSCs change after cellular stress imposed by AML. We generated a traceable syngeneic AML model using AML-ETO leukemia cells transplanted into Osx-Cre;mTmG mice. We found that p53 was highly induced in BM-MSCs of AML mice, further confirming our findings in primary patient samples. The population of BM-MSCs was significantly increased in bone marrow Osx-Cre;mTmG transplanted with syngeneic AML cells. Tunnel staining of bone marrow samples in this traceable syngeneic AML model showed a block in apoptosis of BM-MSCs suggesting that the expansion of BM-MSCs in AML is partly due to inhibition of apoptosis. As the leukemia progressed the number of Td-Tomato positive cells which represents hematopoietic lineage and endothelial cells were significantly decreased indicating failure of normal hematopoiesis induced by leukemia. SA-β-gal activity was significantly induced in osteoblasts derived from leukemia mice in comparison to normal mice further supporting our observation in human leukemia samples that AML induces senescence of BM-MSCs. To examine the effect of p53 on the senescence associated secretory profile (SASP) of BM-MSCs, we measured fifteen SASP cytokines by qPCR and found significant decrease in Ccl4, Cxcl12, S100a8, Il6 and Il1b upon p53 deletion in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) compared to p53 wildtype mice. To functionally evaluate the effects of p53 in BM-MSCs on AML, we deleted p53 in BM-MSCs (Osx-Cre;mTmG;p53fl/fl) and transplanted them with syngeneic AML-ETO-Turquoise AML cells. Deletion of p53 in BM-MSCs strongly inhibited the expansion of BM-MSCs in AML and resulted in osteoblast differentiation. This suggests that expansion of BM-MSCs in AML is dependent on p53 and that deletion of p53 results in osteoblast differentiation of BM-MSCs. Importantly, deletion of p53 in BM-MSCs significantly increased the survival of AML mice. We further evaluated the effect of a Mdm2 inhibitor, DS-5272, on BM-MSCs in our traceable mouse models. DS-5272 treatment of Osx-cre;Mdm2fl/+ mice resulted in complete loss of normal hematopoietic cells indicating a non-cell autonomous regulation of apoptosis of hematopoietic cells mediated by p53 in BM-MSCs. Loss of p53 in BM-MSCs (Osx-Cre;p53fl/fl) completely rescued hematopoietic failure following Mdm2 inhibitor treatment. In conclusion, we identified p53 activation as a novel mechanism by which BM-MSCs regulate proliferation and apoptosis of hematopoietic cells. This knowledge highlights a new mechanism of hematopoietic failure after AML therapy and informs new therapeutic strategies to eliminate AML. Disclosures Khoury: Angle: Research Funding; Stemline Therapeutics: Research Funding; Kiromic: Research Funding. Bueso-Ramos:Incyte: Consultancy. Andreeff:BiolineRx: Membership on an entity's Board of Directors or advisory committees; CLL Foundation: Membership on an entity's Board of Directors or advisory committees; NCI-RDCRN (Rare Disease Cliln Network): Membership on an entity's Board of Directors or advisory committees; Leukemia Lymphoma Society: Membership on an entity's Board of Directors or advisory committees; German Research Council: Membership on an entity's Board of Directors or advisory committees; NCI-CTEP: Membership on an entity's Board of Directors or advisory committees; Cancer UK: Membership on an entity's Board of Directors or advisory committees; Center for Drug Research & Development: Membership on an entity's Board of Directors or advisory committees; NIH/NCI: Research Funding; CPRIT: Research Funding; Breast Cancer Research Foundation: Research Funding; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership; Senti Bio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eutropics: Equity Ownership; Aptose: Equity Ownership; Reata: Equity Ownership; 6 Dimensions Capital: Consultancy; AstaZeneca: Consultancy; Amgen: Consultancy; Daiichi Sankyo, Inc.: Consultancy, Patents & Royalties: Patents licensed, royalty bearing, Research Funding; Jazz Pharmaceuticals: Consultancy; Celgene: Consultancy. OffLabel Disclosure: Mdm2 inhibitor-DS 5272


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 804-804 ◽  
Author(s):  
Mark Bustoros ◽  
Chia-jen Liu ◽  
Kaitlen Reyes ◽  
Kalvis Hornburg ◽  
Kathleen Guimond ◽  
...  

Abstract Background. This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods. Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al., Blood 2014. The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and Dexamethasone at days 1, 8, 15, and 22. This induction phase is followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle is defined as 28 consecutive days, and therapy is administered for a total of 24 cycles total. Bone marrow samples from all patients were obtained before starting therapy for baseline assessment, whole exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle to isolate cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Stem cell collection is planned for all eligible patients. Results. In total, 26 of the planned 56 patients were enrolled in this study from February 2017 to April 2018. The median age of the patients enrolled was 63 years (range, 41 to 73) with 12 males (46.2%). Interphase fluorescence in situ hybridization (iFISH) was successful in 18 patients. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 11 patients (61.1%). The median number of cycles completed was 8 cycles (3-15). The most common toxicities were fatigue (69.6%), followed by rash (56.5%), and neutropenia (56.5%). The most common grade 3 adverse events were hypophosphatemia (13%), leukopenia (13%), and neutropenia (8.7%). One patient had grade 4 neutropenia during treatment. Additionally, grade 4 hyperglycemia occurred in another patient. As of this abstract date, the overall response rate (partial response or better) in participants who had at least 3 cycles of treatment was 89% (23/26), with 5 Complete Responses (CR, 19.2%), 9 very good partial responses (VGPR, 34.6%), 9 partial responses (34.6%), and 3 Minimal Responses (MR, 11.5%). None of the patients have shown progression to overt MM to date. Correlative studies including WES of plasma cells and single-cell RNA sequencing of the bone microenvironment cells are ongoing to identify the genomic and transcriptomic predictors for the differential response to therapy as well as for disease evolution. Furthermore, we are analyzing the cfDNA and CTCs of the patients at different time points to investigate their use in monitoring minimal residual disease and disease progression. Conclusion. The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma. The high response rate, convenient schedule with minimal toxicity observed to date are promising in this patient population at high risk of progression to symptomatic disease. Further studies and longer follow up for disease progression are warranted. Disclosures Bustoros: Dava Oncology: Honoraria. Munshi:OncoPep: Other: Board of director. Anderson:C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Ghobrial:Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document