The Role of PIM1 in the Ibrutinib-Resistant ABC Subtype of Diffuse Large B-Cell Lymphoma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 699-699 ◽  
Author(s):  
Hsu-Ping Kuo ◽  
Sidney Hsieh ◽  
Karl J. Schweighofer ◽  
Leo WK Cheung ◽  
Shiquan Wu ◽  
...  

Abstract Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL), accounting for roughly 30% of newly diagnosed cases in the United States (US). DLBCL is a heterogeneous lymphoma, including the activated B cell-like (ABC) and germinal center B cell-like (GCB) subtypes, which have different gene expression profiles, oncogenic aberrations, and clinical outcomes (Alizadeh, Nature 2000; Staudt, Adv Immunol 2005). ABC-DLBCL is characterized by chronic active B-cell receptor (BCR) signaling (Davis, Nature 2010), which is required for cell survival. Thus, the BCR signaling pathway is an attractive therapeutic target in this type of B-cell malignancy. Bruton's tyrosine kinase (BTK), which plays a pivotal role in BCR signaling, is covalently bound with high affinity by ibrutinib, a first-in-class BTK inhibitor approved in the US for mantle cell lymphoma and chronic lymphocytic leukemia (CLL) patients (pts) who have received at least one prior treatment, CLL with del17p, and WaldenstršmÕs macroglobulinemia. A recent phase 2 clinical trial of single-agent ibrutinib in DLBCL pts revealed an overall response rate of 40% for ABC-DLBCL (Wilson, Nat. Med 2015); however, responses to single kinase-targeted cancer therapies are often limited by the cellÕs ability to bypass the target via alternative pathways or acquired mutations in the target or its pathway (Nardi, Curr Opin Hematol 2004; Gazdar, Oncogene 2009). The serine/threonine-protein kinase PIM1 is one of several genes exhibiting differential expression in ibrutinib-resistant ABC-DLBCL cells compared with wild-type (WT) cells. We identified and report herein the role of PIM1 in ABC-DLBCL ibrutinib-resistant cells. Methods: PIM1 gene expression was analyzed by RT-qPCR. In vitro, cell viability was assessed in the human ABC-DLBCL cell line HBL-1 after treatment with ibrutinib and/or a pan-PIM inhibitor for 3 days, and the effect on colony formation was determined 7 days post-treatment. PIM1 mutational analysis was performed with clinical tumor biopsy samples from 2 studies, PCYC-04753 (NCT00849654) and PCYC-1106-CA (NCT01325701). PIM1 protein stability was analyzed by treating cells with cycloheximide and examining protein levels at different time points up to 8 hours. Results: Gene expression profiling of ibrutinib-resistant ABC-DLBCL cells revealed an upregulation of PIM1 (15-fold increase compared with WT cells) as well as PIM2 and PIM3. We also found that, compared with single-drug treatment, in vitro cell growth could be synergistically suppressed with a combination of ibrutinib and a pan-PIM inhibitor. This effect was observed in both WT (combination index (C.I.) = 0.25; synergy score = 3.18) and ibrutinib-resistant HBL-1 cells (C.I. = 0.18; synergy score = 4.98). In HBL-1 cells, this drug combination reduced colony formation and suppressed tumor growth in a xenograft model (Figure 1). In 48 DLBCL patient samples with available genomic profiling, PIM1 mutations appeared more frequently in pts diagnosed with ABC-DLBCL compared with GCB-DLBCL (5 out of 6 DLBCL pts with PIM1 mutations were ABC-subtype). 4 of these 5 pts exhibited a poor clinical response to ibrutinib, ie, 80% of ABC-DLBCL pts with PIM1 mutations had progressive disease, compared with only 13 of 26 (ie, 50%) ABC-DLBCL pts without PIM1 mutations. Subsequent characterization of the mutant PIM1 proteins (L2V, P81S, and S97N) confirmed that they were more stable than WT PIM1, suggesting increased protein levels by 2 potential mechanisms (WT PIM1 gene up-regulation or increased mutant PIM1 protein half-life). The impact of these mutations on PIM1 function and ibrutinib sensitivity is under investigation. Conclusions: Ibrutinib-resistant ABC-DLBCL cells have increased PIM1 expression, and synergistic growth suppression was observed when ibrutinib was combined with a pan-PIM inhibitor. PIM1 mutations identified in ABC-DLBCL pts with poor responses to ibrutinib contributed to increased PIM1 protein stability. A better understanding of the role of PIM1 in ibrutinib-resistant ABC-DLBCL tumors could provide a rationale for the design of combination therapies. Figure 1. Combination of ibrutinib and a pan-PIM inhibitor in the HBL-1 xenograft model. Ibrutinib and PIM inhibitor treatment suppressed tumor growth by 62% compared with the vehicle-treated group (*p < 0.01, repeated measures MANOVA adjusted univariate F-test). Figure 1. Combination of ibrutinib and a pan-PIM inhibitor in the HBL-1 xenograft model. Ibrutinib and PIM inhibitor treatment suppressed tumor growth by 62% compared with the vehicle-treated group (*p < 0.01, repeated measures MANOVA adjusted univariate F-test). Disclosures Kuo: Pharmacyclics LLC, an AbbVie Company: Employment. Hsieh:pharmacyclics LLC, an AbbVie Company: Employment. Schweighofer:Pharmacyclics LLC, an AbbVie Company: Employment. Cheung:Pharmacyclics LLC, an AbbVie Company: Employment. Wu:Pharmacyclics LLC, an AbbVie Company: Employment. Apatira:Pharmacyclics LLC, an AbbVie Company: Employment. Sirisawad:Pharmacyclics LLC, an AbbVie Company: Employment. Eckert:Pharmacyclics LLC, an AbbVie Company: Employment. Liang:Pharmacyclics LLC, an AbbVie Company: Employment. Hsu:Pharmacyclics LLC, an AbbVie Company: Employment. Chang:Pharmacyclics LLC, an AbbVie Company: Employment.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 505-505 ◽  
Author(s):  
Hsu-Ping Kuo ◽  
Richard Crowley ◽  
Ling Xue ◽  
Karl J. Schweighofer ◽  
Leo WK. Cheung ◽  
...  

Abstract Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma (NHL), accounting for roughly 30% of newly diagnosed cases in the US. DLBCL can progress quickly, and in advanced cases is inconsistently cured with current therapies. Ibrutinib, a first-in-class Bruton's tyrosine kinase (BTK) inhibitor, is approved as a treatment for patients (pts) with mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) who have had one prior treatment. The ABC subtype of DLBCL is considered especially high risk and characterized by chronic active B-cell receptor (BCR) signaling, which is blocked by ibrutinib. Recent phase II clinical trial results of ibrutinib as a single agent in DLBCL pts show an overall response rate of 41% in the ABC subtype (Wilson et al. ASH 2012). Responses of various cancers to single kinase targeted therapies are often limited by the cell's ability to bypass the target via alternative pathways or acquired mutations in the target or its pathway. It has been shown that a small number of CLL pts acquire resistance to ibrutinib through mutations in BTK and its substrate phospholipase C gamma 2 (PLCG2) in the B lymphoma cells following prolonged treatments (Woyach et al. NEJM 2014). Such mechanisms may be overcome by combinations of targeted agents. Through screening of wild-type and acquired ibrutinib-resistant ABC-DLBCL cell lines (e.g. expressing BTK C481S), we identify and report herein B-cell lymphoma-2 (BCL-2) and spleen tyrosine kinase (SYK) inhibitors that synergize with ibrutinib in vitro and in vivo. Methods: Gene expression was analyzed by RT-qPCR using TaqMan Gene Expression Master Mix. Human DLBCL cell lines were treated with drugs for 3 days and the effect on cell growth was determined by CellTiter-Glo luminescent cell viability assay. SCID mice were treated when the TMD8 tumors reached 100-150 mm3. Annexin-V-positive and PI-negative population was detected as apoptotic cells in tumor cells at sacrifice. Cell adhesion and migration assays were performed as previously described (Chang et al. Blood 2013). Analysis of clinical samples used for BCL-2 gene expression profiling was performed using Affymetrix microarrays on FFPE specimens from the phase 2 PCYC-1106 trial (NCT01325701) and a rank based statistic (RankProd) was used to determine the significance of gene expression changes. Results: DLBCL cell lines with higher BCL-2 expression were more sensitive to single agent ABT-199 than those with lower expression. Treatment of DLBCL cells with ibrutinib alone increased BCL-2 expression as well as their sensitivity to BCL-2 inhibitors. Combination treatment with BCL-2 inhibitors and ibrutinib completely inhibited tumor growth in murine models of ABC-DLBCL (Figure). Increased apoptotic cell populations were detected in the combination treated tumors compared to either treatment alone. Clinically, pretreatment tissue samples (n=28) from ABC-DLBCL pts who experienced objective responses to ibrutinib (CR+PR) had lower BCL-2 gene expression. A high BCL-2 mutation rate was observed in pts with poor response to ibrutinib (SD+PD). However, none of these mutations occurred in the BH3 or BH1 domains, both of which appear to interact with ABT-199 based on a 3-dimensional co-crystal structure of the inhibitor with BCL-2 (PDB code 4MAN) and further molecular simulation results. These findings suggest the potential benefit from combination therapy. SYK is another downstream mediator of BCR signaling. Pretreatment of DLBCL cells with SYK inhibitors (e.g. R406) increased their sensitivity to ibrutinib. Ibrutinib resistant B-lymphoma cells with either C481S BTK or R665W PLCG2 mutations were re-sensitized to ibrutinib in combination with BCL-2 or SYK inhibitors, inhibiting cell growth, IgM-induced calcium flux, cell adhesion or migration in mutant containing cells. Conclusions: Consistent with previous results from high-throughput combinatorial screenings of drugs interact favorably with ibrutinib (Mathews Griner, et al. PNAS 2013), we found BCL-2 and SYK may function in alternative survival pathways in DLBCL cells upon BTK inhibition. Human B lymphomas harboring ibrutinib-resistant C481S BTK or R665W PLCG2 may be re-sensitized by BCL-2 or SYK inhibitors, both of which provide a rationale for the design of combination therapies. Figure 1 Combination of ibrutinib and ABT-199 on the effect of TMD-8 tumor growth. Figure 1. Combination of ibrutinib and ABT-199 on the effect of TMD-8 tumor growth. Disclosures Kuo: Pharmacyclics: Employment. Crowley:Pharmacyclics: Employment. Xue:Pharmacyclics: Employment. Schweighofer:Pharmacyclics: Employment. Cheung:Pharmacyclics: Employment. Hsieh:Pharmacyclics: Employment. Eckert:Pharmacyclics: Employment. Versele:Janssen Pharmaceutica: Employment. Chang:Pharmacyclics, Inc: Employment, Equity Ownership.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208709 ◽  
Author(s):  
Silvia Da Ros ◽  
Luca Aresu ◽  
Serena Ferraresso ◽  
Eleonora Zorzan ◽  
Eugenio Gaudio ◽  
...  

Blood ◽  
2019 ◽  
Vol 133 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Inhibition of the B-cell receptor (BCR) signaling pathway is a promising treatment strategy in multiple B-cell malignancies. However, the role of BCR blockade in diffuse large B-cell lymphoma (DLBCL) remains undefined. We recently characterized primary DLBCL subsets with distinct genetic bases for perturbed BCR/phosphoinositide 3-kinase (PI3K) signaling and dysregulated B-cell lymphoma 2 (BCL-2) expression. Herein, we explore the activity of PI3K inhibitors and BCL-2 blockade in a panel of functionally and genetically characterized DLBCL cell line models. A PI3K inhibitor with predominant α/δ activity, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. The proapoptotic effect of copanlisib was associated with DLBCL subtype-specific dysregulated expression of BCL-2 family members including harakiri (HRK) and its antiapoptotic partner BCL extra large (BCL-xL), BCL2 related protein A1, myeloid cell leukemia 1 (MCL-1), and BCL2 interacting mediator of cell death. Using functional BH3 profiling, we found that the cytotoxic activity of copanlisib was primarily mediated through BCL-xL and MCL-1–dependent mechanisms that might complement BCL-2 blockade. For these reasons, we evaluated single-agent activity of venetoclax in the DLBCLs and identified a subset with limited sensitivity to BCL-2 blockade despite having genetic bases of BCL-2 dysregulation. As these were largely BCR-dependent DLBCLs, we hypothesized that combined inhibition of PI3Kα/δ and BCL-2 would perturb BCR-dependent and BCL-2–mediated survival pathways. Indeed, we observed synergistic activity of copanlisib/venetoclax in BCR-dependent DLBCLs with genetic bases for BCL-2 dysregulation in vitro and confirmed these findings in a xenograft model. These results provide preclinical evidence for the rational combination of PI3Kα/δ and BCL-2 blockade in genetically defined DLBCLs.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 455 ◽  
Author(s):  
Sarwat Chowdhury ◽  
Smitha Sripathy ◽  
Alyssa A. Webster ◽  
Angela Park ◽  
Uyen Lao ◽  
...  

Genetic ablation as well as pharmacological inhibition of sirtuin 2 (SIRT2), an NAD+-dependent protein deacylase, have therapeutic effects in various cancers and neurodegenerative diseases. Previously, we described the discovery of a dual SIRT1/SIRT2 inhibitor called cambinol (IC50 56 and 59 µM, respectively), which showed cytotoxic activity against cancer cells in vitro and a marked anti-proliferative effect in a Burkitt lymphoma mouse xenograft model. A number of recent studies have shown a protective effect of SIRT1 and SIRT3 in neurodegenerative and metabolic diseases as well as in certain cancers prompting us to initiate a medicinal chemistry effort to develop cambinol-based SIRT2-specific inhibitors devoid of SIRT1 or SIRT3 modulating activity. Here we describe potent cambinol-based SIRT2 inhibitors, several of which show potency of ~600 nM with >300 to >800-fold selectivity over SIRT1 and 3, respectively. In vitro, these inhibitors are found to be toxic to lymphoma and epithelial cancer cell lines. In particular, compounds 55 (IC50 SIRT2 0.25 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) and 56 (IC50 SIRT2 0.78 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) showed apoptotic as well as strong anti-proliferative properties against B-cell lymphoma cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3805-3805
Author(s):  
Jorge Contreras ◽  
Jayanth Kumar Palanichamy ◽  
Tiffany Tran ◽  
Dinesh S. Rao

Abstract Diffuse large B cell lymphoma (DLBCL) is one of the most common Non-Hodgkin lymphomas among adults. It is a heterogeneous disease characterized by multiple mutations and translocations. Gene expression profiling studies have revealed several characteristic gene expression patterns, with two main patterns emerging, namely Germinal Center(GC) type, and Activated B Cell (ABC) type. ABC-type DLBCL shows gene expression patterns that resemble activated B-cells, with increased expression of anti-apoptotic, and pro-proliferative genes. Critically, upregulation of the NF-κB the pathway is a hallmark of ABC-type DLBCL and has been shown to be necessary for survival, and is caused by several different mutations at different levels within the pathway. Recent work has revealed the critical importance of a new class of small RNA molecules, namely microRNAs, in gene regulation. Of these, microRNA-146a (miR-146a) was discovered as an NF-κB induced microRNA that plays a role as a negative feedback regulator of this pathway by targeting adaptor proteins. To further characterize miR-146a, mice deficient for this miRNA were created, and were found to develop lymphadenopathy, splenomegaly, and myeloid proliferation. As expected, immune cells in these mice have an upregulated NF-κB pathway and many of the phenotypes can be ameliorated by inhibition of the NF-κB pathway. Importantly, a significant proportion of the animals develop B-cell lymphoma at older ages. In this study, we examined the role of miR-146a in the development of malignancy in B-cells. To accelerate the role of miR-146a in tumor formation we overlaid the miR-146a deficient allele onto the Eμ-Myc like mouse model. Eμ-Myc mice develop tumors on average by 14weeks of age. The transgenic status of animals was verified by genotyping, RNA and protein expression analyses. miR-146a sufficient and deficient animals on the Eμ-Myc background were followed for tumor latency by peripheral blood analysis and careful physical examination. Based on approved humane criteria for animal discomfort, animals were sacrificed and hematopoietic tissue was harvested for analysis. Mice deficient for miR-146a had a statistically reduced survival in comparison with miR-146a sufficient animals with a p-value of .0098 (Kaplan Meir survival analysis). Complete Blood Count of animals at time of death revealed an increase leukemia presentation in the miR-146a deficient background. FACS analysis of tumor tissue from both groups revealed an increase in the number of IgM positive tumors in the miR-146a-deficient background indicating skewing towards more mature B cell neoplasms when miR-146a is lacking. Lineage analysis of tumors verified them to be of B cell origin although a subset of miR-146a sufficient tumors had higher numbers of infiltrating myeloid cells compared to deficient animals. Furthermore, histologic analysis of hematopoietic organs showed that while infiltration remained similar in kidneys and liver, more spleens in the miR-146a deficient background tended to be less involved. Our extensive histopathologic and immunophenotypic analyses indicate that miR-146a deficiency drives a more aggressive malignant phenotype in the B-cell lineage. In keeping with this, our profiling studies of human DLBCL suggest that a subset of DLBCL show decreased expression of miR-146a. We are currently examining the status of NF-κB in the murine tumors and using high throughput sequencing approaches to delineate gene expression differences between miR-146a sufficient and deficient tumors. We anticipate the discovery of novel gene targets of miR-146a and expect that these studies will lead to improved diagnostic and therapeutic options for patients of B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2948-2948
Author(s):  
Toshihiro Banjo ◽  
Yasuhiro Hama ◽  
Emi Nosaka ◽  
Yoshimi Takata ◽  
Daisuke Honma ◽  
...  

Abstract Enhancer of zeste homologous (EZH) 2 and its close homolog EZH1 are catalytic subunits of polycomb repressive complex (PRC) 2 protein complex, and play redundant and crucial role for the maintenance of transcriptional repression by tri-methylating histone H3 lysine 27 (H3K27). Hyper trimethylation of H3K27 has been associated with malignant lymphoma and myeloma progression, thus several small molecules suppressing PRC2 complex activity has been developed for hematological malignancy therapy. We have developed valemetostat tosylate (DS-3201b, also known as valematostat), a potent dual inhibitor of EZH1/2, and demonstrated its superior anti-proliferative effect against DLBCL cells to tazemetostat (EPZ-6438, E7438) a selective EZH2 inhibitor currently in clinic. In addition, valemetostat synergized with wide variety of 1st and 2nd line drugs used in DLBCL therapy both in vitro and in vivo proposing its potential combination opportunities. However, it is still elusive how valemetostat modulates epigenetic landscape and represses malignant B-cell proliferation more potently than selective EZH2 inhibitors. Therefore, impact on epigenetic landscape between valemetostat and tazemetostat was analyzed by RNA/ChIP-sequencing. Though these two inhibitors significantly reduced cellular global H3K27me3 level, we observed ectopic EZH1/2 accumulation in several tumor suppressor gene loci after tazemetostat treatment resulting in partial reduction in H3K27me3 and de-repression of silenced gene expression. Meanwhile valemetostat treatment evidently triggered gene expression by depleting H3K27me3 and enhancing H3K27Ac mark without inducing ectopic enrichment of EZH1/2, suggesting that valemetostat has a distinct effect on genome wide distribution of EZH1/2 from tazemetostat. In conclusion, these results suggest that valemetostat has a capacity of averting ectopic relocation of EZH1/2 on tumor suppressor genes mainly induced by EZH2 specific inhibition and thereby exerts greater anti-B cell tumor effect than EZH2 preferential inhibitor. A phase 2 clinical study of valemetostat is now ongoing for patients with Relapse/Refractory B-cell Lymphoma [ClinicalTrials.gov Identifier: NCT04842877] Disclosures Banjo: Daiichi Sankyo Co., Ltd.: Current Employment. Hama: Daiichi Sankyo Co., Ltd.: Current Employment. Nosaka: Daiichi Sankyo Co., Ltd.: Current Employment. Takata: Daiichi Sankyo Co., Ltd.: Current Employment. Honma: Daiichi Sankyo Co., Ltd.: Current Employment. Kitagawa: Daiichi Sankyo Co., Ltd.: Current Employment. Yamamoto: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Wada: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Yoshida: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Lim: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Okamoto: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Sato: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Katayama: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Sato: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Goto: Daiichi Sankyo RD Novare Co., Ltd.: Current Employment. Abe: Daiichi Sankyo Co., Ltd.: Current Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4852-4852 ◽  
Author(s):  
Sanghoon Lee ◽  
Changhong Yin ◽  
Janet Ayello ◽  
Erin Morris ◽  
Lauren Harrison ◽  
...  

Abstract BACKGROUND: Primary Mediastinal B-Cell Lymphoma (PMBL) is a rare form of B-cell non-Hodgkin lymphoma (Lones/Cairo et al, JCO 2000). We have previously reported a significant decrease in EFS among pediatric and adolescent patients with PMBL compared with other stage III non-PMBL diffuse large B-cell lymphoma (DLBCL) patients following FAB/LMB 96 therapy, suggesting that new therapeutic targeted agents are needed (Gerrard/Cairo et al, Blood 2013). Activation of the B-cell receptor (BCR) signaling pathway has now emerged as a central oncogenic pathway that promotes growth and survival in both normal and malignant B-cells. The cascade of signaling pathways downstream of the BCR includes BTK, MAPK, NF-κB and AKT. PMBL has a constitutively activated NF-kB pathway (Rosenwald et al, JEM 2003). Ibrutinib is a selective and covalent BTK inhibitor that inhibits chronic active BCR signaling and downstream signaling including the NF-kB pathway (Herman et al, Blood 2014) and is an active agent in ABC-DLBCL, which also has an activated NF-kB pathway (Griner et al, PNAS 2014). Preclinical studies of ibrutinib in CLL and MCL suggested that the inhibitory effects on cell proliferation were seen in the range of 1.0uM to 25.0uM (Herman et al, Blood 2011; Cinar et al, Leuk. Res 2013). Despite these relatively high IC50 values in vitro, ibrutinib has been highly effective in the treatment of patients with refractory CLL and MCL (Byrd et al, NEJM 2013 and Wang et al, NEJM 2013). Ibrutinib was approved by the FDA (IMBRUVICA, USPI) for patients with MCL in November 2013 or CLL in February 2014, who have received at least one prior therapy. However, the antitumor activity against PMBL of ibrutinib alone and in combination with other agents is currently unknown. OBJECTIVES: We hypothesize that ibrutinib in combination with other agents may be a future targeted agent in the treatment of PMBL. Therefore, we investigated the effect of ibrutinib alone and in combination with dexamethasone, rituximab and carfilzomib on cell proliferation and apoptosis in a PMBL cell line. METHODS: The Karpas-1106P PMBL cell line (DSMZ, Germany) was treated with ibrutinib alone (0-10uM, generously provided by Janssen R&D LLC) and in combination with dexamethasone (1uM), rituximab (20ug/ml) and carfilzomib (5nM) for 5 days treatment. The MTS cell proliferation assay (Promega) and western blot analysis were performed. Significant differences were determined by Student's t -test.The IC50 values were determined with CompuSyn software (Chou and Martin, ComboSyn, 2005). RESULTS: We observed a significant down-regulation of phosphorylated BTK after 5 days with ibrutinib treatment in Karpas-1106P cell line with 1uM ibrutinib (0.178 ± 1.63, p<0.0001) and the expression of total BTK protein was also significantly decreased with 1uM ibrutinib following 5 days of treatment (0.803±0.190, p<0.005) compared to control (1.000±0.00). We also observed a significant dose-dependent decrease in cell proliferation (0-10uM, p<0.0001) in ibrutinib-treated Karpas-1106P PMBL cell line. In combination with dexamethasone, the ibrutinib IC50 values for inhibition of cell proliferation were significantly decreased from 0.71uM ± 0.172 (ibrutinib alone) to 0.04uM ± 0.007 (p<0.005) with 1.0uM dexamethasone combination following 5 days of treatment. Second, in combination with rituximab experiment, the ibrutinib IC50 values was significantly decreased from 0.845uM ± 0.289 (ibrutinib alone) to 0.37uM ± 0.056 (p<0.05) with 20ug/ml rituximab following 5 days of treatment. Lastly, the ibrutinib IC50 values were significantly decreased from 0.72uM ± 0.185 (ibrutinib alone) to 0.002uM ± 0.001 (p<0.005) with 5nM carfilzomib combination following 5 days of treatment. CONCLUSIONS: Ibrutinib alone and in combination with dexamethasone, rituximab and carfilzomib significantly inhibited cell proliferation in the Karpas-1106P PMBL cell line. Ibrutinib's potential as an adjuvant agent in combination treatment in patients with PMBL is supported by these experiments. Future studies will focus on the in vivo effects of ibrutinib alone and in combination with dexamethasone and carfilzomib in a NOD/SCID PMBL xenograft mouse model. Disclosures Galardy: Mission Therapeutics: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-30
Author(s):  
Wu Yin ◽  
Nie Zhe ◽  
Andrew Placzek ◽  
Michael Trzoss ◽  
Goran Krilov ◽  
...  

Introduction: MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), was identified as a translocation protein fused with cIAP2 in mucosa-associated lymphoid tissue (MALT) B cell lymphomas. MALT1, a key mediator of NF-κB signaling and the main driver of a subset of B-cell lymphomas, functions via formation of a complex with CARMA1 and BCL10 to mediate antigen receptor-induced lymphocyte activation. MALT1 has been considered as a potential therapeutic target for several non-Hodgkin B cell lymphomas as well as chronic lymphocytic leukemia (CLL). Here, we describe the discovery of novel, potent MALT1 inhibitors that result in antiproliferative effects in non-Hodgkin B-cell lymphoma cells. Results: We have identified novel small molecule MALT1 inhibitors using our proprietary physics-based Free Energy Perturbation (FEP+) modeling technology. Our compounds show potent (sub nM) inhibition of MALT1 enzymatic activity, as well as high binding affinity (sub nM) to MALT1 protein measured by Surface Plasmon Resonance (SPR). BCL10 is a binding partner of MALT1 that is cleaved by MALT1 at the C-terminus. Our inhibitors were efficacious in a target engagement assay showing prevention of BCL10 cleavage in Activated B-cell (ABC) subtype of diffuse large B cell lymphoma (DLBCL) cell lines OCI-LY3 and OCI-LY10, which are Bruton tyrosine kinase (BTK) inhibitor ibrutinib-resistant and -responsive respectively. Our compounds are potent inhibitors of IL10 secretion in both OCI-LY3 and OCI-LY10 cells, which is consistent with the inhibition of NF-κB signaling. We also examined the effect of our MALT1 inhibitors on ABC-DLBCL cell proliferation. Our inhibitors demonstrated potent anti-proliferative effects in both OCI-LY3 and OCI-LY10 cell lines, as well as synergistic effects with ibrutinib in a BTKi sensitive ABC-DLBCL cell panel. Examinations of a protease panel and off-target safety screening panel, as well as in vivo high dose tolerability study showed our compound had excellent selectivity and significant safety margin. Plasma IL10 and tumor BCL10 have been identified as robust PD markers in PK/PD studies in both OCI-LY3 and OCI-LY10 tumor bearing mice. Dose-dependent tumor growth inhibition was observed after 3 weeks of treatment in OCI-LY3 xenograft model, with efficacy also observed in combination with venetoclax. Ongoing work: We are continuing to explore the synergistic effects of our compounds with BTK inhibitors in B-cell lymphoma mouse models. Preliminary data showed potent inhibition of IL-2 secretion in Jurkat cells from our compound treatment. Additional studies are ongoing to elucidate the role of MALT1 inhibition in Treg as well as Teffector cells in vitro and in vivo. Refinement of the current inhibitor series, using co-crystal structures, is in progress in preparation for further development of optimized molecules. Conclusion and Future Plans: We have identified novel potent MALT1 protease small molecule inhibitors that are efficacious in the in vitro B-cell lymphoma cell proliferation assays and in the in vivo B-cell lymphoma xenograft model. Our data suggest that targeting MALT1 may expand therapy options for patients with selected B-cell lymphomas, such as ABC-DLBCL. Our work provided insight into the anti-tumor efficacy of our inhibitors in B-cell lymphomas as single agent, and ongoing work will continue to assess the potential combination with BTKi to overcome drug-induced resistance in patients with relapsed/refractory B-cell lymphoma. Disclosures Yin: Schrodinger: Current Employment, Current equity holder in publicly-traded company. Zhe:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Placzek:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Trzoss:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Krilov:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Feng:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Lawrenz:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Pelletier:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Lai:Triplet Therapeutics: Current Employment, Current equity holder in private company. Bell:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Calkins:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Grimes:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Tang:Schrodinger: Current Employment, Current equity holder in publicly-traded company. McRobb:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Gerasyuto:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Feher:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Mondal:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Jensen:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Wright:Schrodinger: Current Employment, Current equity holder in publicly-traded company. Akinsanya:Schrodinger: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2924-2924
Author(s):  
Xiangxiang Zhou ◽  
Ying Li ◽  
Xinyu Li ◽  
Lingyun Geng ◽  
Ya Zhang ◽  
...  

Abstract Introduction: Klotho is an anti-aging gene with an extracellular domain. Mice with Klotho knockout exhibited obvious impairment in B-cell development. Evolving evidence indicates that Klotho modulates the proliferation and survival via targeting insulin-like growth factor-1 receptor (IGF-1R) in several cancers. However, the expression and biological role of Klotho in B-cell non-Hodgkin lymphoma (B-NHL) has not been elucidated to date. We hypothesized that Klotho could modulate the tumor growth and predicts prognosis in diffuse large B-cell lymphoma (DLBCL) through inhibiting IGF-1R activation. The aim of this study is to characterize the functional significance of Klotho and the therapeutic potential of its secreted form in DLBCL. Methods: Lymph nodes samples from 50 de novo DLBCL and 20 reactive hyperplasia cases were collected with informed consents. Klotho expression were assessed by Immunohistochemistry. CD19+ B-cells and peripheral blood mononuclear cells were isolated with informed consents from healthy donors. Expression levels of Klotho mRNA and protein in DLBCL cells were determined by quantitative RT-PCR and western blotting. Lentivirus vectors either encoding Klotho (LV-KL) or empty lentiviral vector (LV-Con) were stably transfected into DLBCL cells. Cell viability and apoptosis were analyzed by cell counting kit-8 and Annexin V-PE/7AAD staining. Animal experiments were performed in accordance with the principles of the Institutional Animal Care. SCID-Beige mice were subcutaneously injected with DLBCL cells to establish xenograft model. Results: We observed markedly decreased level of Klotho protein in DLBCL lymph nodes (Fig. 1A). Expression of Klotho protein exhibited significantly negative correlation with Ann Arbor stage of DLBCL patients (p=0.002). Level of Klotho protein was negatively correlates with the media overall survival (OS), suggesting lower Klotho expression is associated with poor OS in DLBCL ((Fig. 1B, p=0.045). Reduction of Klotho was also confirmed in DLBCL cell lines at mRNA and protein level (Fig. 1C). We next functionally interrogated the role of Klotho in DLBCL cell lines and xenograft models. Stably expression of LV-KL in DLBCL cell lines resulted in dramatically decreased cell proliferation and incremental apoptotic rates when compared to LV-Con (Fig. 2A and B). We validated the changed expression of critical targets known to govern apoptosis in DLBCL cells transfected with LV-KL. Xenograft models with Klotho overexpression revealed significantly abrogated tumor growth compared to control group (Fig. 2C). Interestingly, lower levels of Ki67 were observed in mice treated with LV-KL (Fig. 2D). These results highlighted the proliferation-inhibitory and apoptosis-inductive activities of Klotho in DLBCL cells. The underlying mechanism driving the tumor suppressive potential of Klotho was investigated. Surprisingly, we observed that the Klotho-induced inhibition of cell viability was only fewer restored by IGF-1 in DLBCL cells transfected with LV-KL (Fig. 3A). Reductive phosphorylation of IGF-1R and its downstream targets (AKT and ERK1/2) were observed in DLBCL cells with Klotho overexpression (Fig. 3B). In addition, we evaluated the regulation of Klotho on IGF-1R signaling in vivo. Decreased phosphrolation of IGF-1R as well as its downstream targets were observed in mice treated with LV-KL compared to the control group (Fig. 3C). Lastly, we explored the activity of secreted Klotho protein (rhKL). The rhKL was found to be active in vitro and significantly reduced the viabilities of DLBCL cells (Fig. 3D). Moreover, combination with rhKL increased the sensitivity of DLBCL cells to adriamycin. The in vivo activity of rhKL in DLBCL xenograft model was also detected. Significantly decreased tumor volumes were noted in mice treated with rhKL compared with those treated with vehicle control (Fig. 3E). Moreover, reductive expression level of Ki67 was observed in rhKL-treated group (Fig. 3F). Conclusions: Our observations identified for the first time that loss of Klotho expression contributed to the development and poor prognosis via activating IGF-1R in DLBCL. Given the in vivo tumor suppressive activity of secreted Klotho protein, it may serve as a potential strategy for the development of novel therapeutic interventions for DLBCL. Figure 1 Figure 1. Figure 2 Figure 2. Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2668-2668
Author(s):  
Zhi-Zhang Yang ◽  
Steven C. Ziesmer ◽  
Anne J. Novak ◽  
Toshiro Niki ◽  
Mitsuomi Hirashima ◽  
...  

Abstract Abstract 2668 Poster Board II-644 Interleukin-12 (IL-12) has been demonstrated to induce IFN-g production by T and NK cells and thereby contribute to anti-tumor immunity. However, the administration of IL-12 to boost anti-tumor immunity in B-cell lymphoma has shown no clinical benefit. In fact, clinical trials of IL-12 in combination with rituximab in follicular B-cell lymphoma (FL) showed a lower response rate in patients treated with the combination than in patients treated with rituximab alone (Clin Cancer Res. 2006 15; 12:6056-63). The goal of this study was therefore to determine the role of IL-12 in the antitumor response in B-cell NHL. First, we measured serum levels of IL-12 in patients with untreated FL before treatment with rituximab and normal healthy controls. We found that serum IL-12 levels were elevated in FL patients compared to healthy individuals (median: 0.50 ng/ml, n=30 vs 0.32 ng/ml, n=22; p= 0.03) and that elevated serum IL-12 levels were associated with a poor outcome in these patients when treated with rituximab alone as initial therapy. Using 0.56 ng/ml as a cutoff, patients with serum IL-12 levels of greater than 0.56 ng/ml had a significantly shorter time to progression than patients with IL-12 levels less than 0.56 ng/ml (12 months versus 40 months; p=0.001). To determine the mechanism by which IL-12 may contribute to a poor prognosis, we investigated the role of IL-12 on induction of immune tolerance. First, we found that TIM-3, a member of the T cell immunoglobulin and mucin domain-containing protein (TIM) family that functions to terminate TH1-mediated immunity and promote tolerance, was constitutively expressed on a subset of intratumoral T cells accounting for approximately 15% and 25% of the intratumoral CD4+ and CD8+ T cells, respectively. In contrast, less than 2% of T cells from peripheral blood of normal individuals expressed TIM-3. TIM-3-expressing T cells were distinct from regulatory T cells since CD25+ and Foxp3+ T cells lacked TIM-3 expression. Secondly, we found that TIM-3-expressing CD4+ cells were unable to produce cytokines such as IL-2, IFN-g or IL-17 and that TIM-3-expressing CD8+ T cells failed to produce Granzyme B, IFN-g or IL-2. We also observed that TIM-3-expressing T cells lost the capacity to proliferate in response to TCR activation. These results suggest that TIM-3 expressing CD4+ and CD8+ T cells are functionally exhausted. Thirdly, we observed that TIM-3 expression on T cells could be induced by activation and that IL-12 was the strongest stimulus to induce TIM-3 expression on CD4+ and CD8+ T cells. Finally, we found by immunohistochemistry (IHC) that Galectin-9 (Gal-9), a ligand for TIM-3, was abundantly expressed on lymphoma B cells. In vitro incubation with a stable form of Gal-9 induced apoptosis of CD4+ and CD8+ T cells in a dose dependent fashion. Gal-9-mediated apoptosis of T cells was attenuated by a TIM-3 Fc protein and isolated TIM-3+ T cells exhibited a significantly higher apoptosis rate than TIM-3− T cells in response to Gal-9. These results indicate that, in contrast to the observations in vitro or in vivo in mice, IL-12 actually plays a detrimental role in lymphoma patients. Given the findings that IL-12 strongly induces TIM-3 expression on effector T cells and that the TIM-3/Gal-9 pathway impairs the immune response, we conclude that increased serum levels of IL-12 suppress anti-tumor immunity in follicular lymphoma patients and is associated with a poor prognosis. Disclosures: Witzig: Novartis: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document