Deletion of Pleiotrophin in LepR+ Perivascular Cells Depletes Hematopoietic Stem Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1491-1491
Author(s):  
Heather A Himburg ◽  
Vivian Y. Chang ◽  
Joshua Sasine ◽  
Jenny Kan ◽  
Liman Zhao ◽  
...  

Abstract Pleiotrophin (PTN) is a heparin binding growth factor which is expressed by bone marrow vascular endothelial cells (BM ECs) and perivascular stromal cells. Treatment of murine or human HSCs ex vivo promotes HSC expansion (Nat Med. 2010 Apr;16(4):475-82) and constitutive deletion of PTN depletes LT-HSCs in steady state and markedly impairs HSC regeneration following myeloablation (Cell Rep. 2012 Oct 25;2(4):964-75; JCI. 2014;18(7):1123-1129). Here, we sought to determine which BM microenvironment cell is responsible for PTN-mediated maintenance of the HSC pool. Utilizing the Cre-loxP system, we deleted PTN from VE-cadherin+ ECs, leptin receptor+ (lepR+) perivascular stromal cells, osteocalcin+ osteoblasts, and vav1+ hematopoietic cells and examined the effects on hematopoiesis. We observed no differences in steady state hematopoiesis or HSC content as measured by long-term competitive repopulation assays in mice lacking PTN expression in osteocalcin+ cells, vav1+ hematopoietic cells or VE-cadherin+ BM ECs. However, deletion of PTN from lepR+ BM perivascular cells caused a significant decrease in BM c-kit+sca-1+lin- cells (KSL cells) and BM SLAM+KSL HSCs, and colony forming cell (CFC) content compared to PTN+/+ controls (*p = 0.04, 0.04, and 0.001, respectively). Importantly, deletion of PTN in lepR+ cells, caused a significant reduction in long-term HSC content as measured by primary and secondary competitive repopulation assays (*P<0.01 for all time points through 20 weeks). These data suggest that LepR+ BM perivascular cells, rather than VE-cadherin+ ECs are the primary source of PTN in the BM niche which contributes to the maintenance of the HSC pool. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3536-3536
Author(s):  
Neeta Shirvaikar ◽  
Leah A. Marquez-Curtis ◽  
Andrew Shaw ◽  
A. Robert Turner ◽  
Anna Janowska-Wieczorek

Abstract Abstract 3536 Poster Board III-473 Hematopoietic stem/progenitor cells (HSPC) that have been mobilized from bone marrow (BM) to peripheral blood (PB) by granulocyte-colony stimulating factor (G-CSF) are being used for autologous and allogeneic transplantation. However, the molecular mechanisms of HSPC mobilization are not completely understood. The key molecules and interactions that regulate HSPC mobilization include various adhesion molecules, chemokine stromal cell-derived factor (SDF)-1 and its receptor CXCR4, and proteases including the soluble matrix metalloproteinase (MMP)-9. Membrane type (MT)-1 MMP, which is localized on the leading edge of migrating cells, has strong pericellular proteolytic activity, activates the latent MMPs especially proMMP-2, and has been implicated in mediating migration of tumor cells, monocytes, endothelial as well as CD34+ HSPC. MT1-MMP not only degrades several extracellular matrix molecules in the pericellular space, but also cleaves cell surface molecules such as CXCR4 and CD44, cytokines, and chemokines including SDF-1. In this study we focused on characterizing the role of MT1-MMP during G-CSF-induced migration, its regulation and subcellular localization in HSPC and mature cells. We found that MT1-MMP mRNA and protein expression (as determined by RT-PCR and flow cytometry) in G-CSF-mobilized mature hematopoietic cells (monocytes and neutrophils) as well as immature CD34+ cells was significantly higher than in their steady-state BM counterparts. Moreover, G-CSF stimulation (i) upregulated MT1-MMP transcription (RT-PCR) and protein synthesis (flow cytometry, Western blot, and confocal microscopy) in BM MNC and CD34+ cells but not in BM stromal cells; and (ii) increased their trans-Matrigel chemoinvasion towards an SDF-1 gradient which was inhibited by the MT1-MMP inhibitor epigallocatechin 3-gallate, by anti-MT1-MMP mAb, and by siRNA silencing of MT1-MMP. To determine the effect of high MT1-MMP expression in hematopoietic cells on the BM microenvironment we co-cultured steady-state BM CD34+ cells with BM fibroblasts. Zymographic analysis of the cell-conditioned media revealed that activation of proMMP-2 occurs only when the co-cultures were stimulated with G-CSF indicating that upregulation of MT1-MMP in CD34+ cells is necessary for proMMP-2 activation as media conditioned by CD34+ cells (silenced with MT1-MMP siRNA) co-cultured with stromal cells did not show proMMP-2 activation. We next focused on determining the signaling pathways that regulate MT1-MMP expression and localization in hematopoietic cells including HSPC during G-CSF-induced migration. We found that although G-CSF activated both phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways (Western blot), upregulation of MT1-MMP by G-CSF, and proMMP-2 activation were PI3K-dependent. Moreover, we demonstrated for the first time that G-CSF incorporated MT1-MMP to membrane lipid rafts of hematopoietic cells in a PI3K-dependent manner since inhibition of this axis by PI3K inhibitor LY290042 reduced MT1-MMP incorporation, an effect not observed with the MAPK inhibitor PD98059. We further demonstrated that by disrupting raft formation using the cholesterol sequestering agent methyl-beta-cyclodextrin, PI3K phosphorylation was inhibited. Subsequently MT1-MMP incorporation into lipid rafts was abrogated resulting in reduced both proMMP-2 activation and HSPC trans-Matrigel migration. We conclude that G-CSF-induced upregulation of MT1-MMP and its incorporation into membrane lipid rafts of hematopoietic cells contributes to the activation of proMMP-2 and to the generation of a highly proteolytic microenvironment in BM, which facilitates egress of HSPC into circulation. Our results suggest that manipulating MT1-MMP expression could become a new strategy to enhance mobilization of HSPC and improve the outcome of transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3211-3211
Author(s):  
Masayoshi Kobune ◽  
Shohei Kikuchi ◽  
Kazuyuki Murase ◽  
Satoshi Iyama ◽  
Tsutomu Sato ◽  
...  

Abstract Abstract 3211 We have previously shown that primary human stromal cells and hTERT-transduced human stromal cells (hTERT-stromal cells) support cord blood (CB) hematopoietic stem/progenitor cells. However, it is unclear whether human stromal cells maintain the expansion of erythroid progenitor cells without losing erythroid differentiation potential for a long-term ex vivo culture. In an attempt to evaluate the efficacy of human stromal cells, erythroid induction was conducted by SCF, EPO and IGF-1, 2-week after expansion of CB CD34+ cells with or without human stromal cells. The maturation of erythroid cells were evaluated by morphological findings, transferrin receptor (TfR)/glycophorin A (GPA) expression and hemoglobin (Hb) synthesis (MCH, pg/cells). The number of BFU-E upon 2-week coculture with the hTERT-stromal cells was significantly higher than those without hTERT-stromal cells (BFU-E, 639±102 vs. 4078±1935, the initial cell number of BFU-E was 513±10). Hb concentration of erythroblasts that had been derived from coculture with stromal cells, was significantly higher than that derived from stroma-free condition 14 days after erythroid induction (MCH, 0.78±0.11 vs. 2.62±0.12; p<0.05). Moreover, cobblestone area (CA)-forming cells existed beneath stromal layer weekly produced the large number of BFU-E from 4th week to at least 8th week (the total number of BFU-E, 57246±1288)(Figure A). Notably, these BFU-Es derived from CA could simultaneously differentiate into orthophilic erythroblasts with nearly normal Hb synthesis (MHC, 24.5±6.4 pg/cell)(Figure B) and GPA expression. Furthermore, most of these erythroblasts derived from CA underwent enucleation spontaneously after further 7 days culture. Thus, using hTERT-stromal cells, the long-term ex vivo erythroid production could be attained from CB cells. These findings contribute to constructing long-term of ex vivo erythroid production system using human stromal cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4276-4276
Author(s):  
Ahmad Abu-Khader ◽  
Gwendoline Bugnot ◽  
Manal Alsheikh ◽  
Roya Pasha ◽  
Nicolas Pineault

Abstract Delayed neutrophil and platelet engraftment is a significant issue of cord blood (CB) transplantation. Ex vivo expansion of CB hematopoietic stem and progenitor cells (HSPC) before infusion has been shown to accelerate hematopoietic recovery in patients. Recently, we reported that serum free medium (SFM) conditioned with osteoblasts derived from human bone marrow (BM) mesenchymal stromal cells, referred as M-OST CM, was superior to SFM or MSC CM for the expansion of CB CD34+ cells, and that HSPC expanded in M-OST CM provided better platelet engraftment. Since large number of expanded cells were transplanted in the original study, it was not possible to estimate the increased expansion of HSPC with short-term (ST) and long-term (LT) thrombopoietic and BM engraftment activities. The objectives herein were to investigate these shortcomings using limit dilution analysis (LDA) in transplantation assay and to investigate the cellular mechanisms at play. M-OST CM was prepared by conditioning SFM with immature M-OST overnight. CB CD34+ cells were expanded in M-OST CM or in SFM (defined as control) for 7 days with SCF, FL and TPO. CB cell expansion was significantly greater in M-OST CM cultures vs. SFM control (2.4 ±0.9 fold, mean ± SD, n=4, p=0.01). LDA transplantation assays were done by infusing the progeny of 500-8000 CD34+ cells in NSG mice. First, we compared the ST (< 31 days) and LT (˃ 100 days) thrombopoietic activities of expanded HSPC by measuring circulating human platelets (hPLT). The threshold for hPLT engraftment was set above the mean background level measured in control mice + 1SD. The median ST levels of hPLT in M-OST mice tended to be greater (2.5-fold, p˃0.05) in M-OST recipients (21 mice/condition, n=2). The frequency of ST hPLT HSPC estimated by LDA was 3.4 ±0.2 fold higher in M-OST CM cultures though the difference vs. control was not significant (p=0.11). LT hPLT levels were significantly greater in M-OST recipients (median 33 vs. 8 hPLT/uL blood, p=0.0027). Consistent with this, the frequency of HSPC with LT hPLT engraftment was increased in M-OST CM cultures (3.5±0.8 fold, p<0.04). Considering the differences in cell expansion, the net expansion of HSPC with ST and LT hPLT engraftment were raised by 5.5 ±1.7 and 6.0 ±3.4 fold in M-OST CM cultures vs. control (n=2). Next, LT human BM engraftment was analyzed at week 16. Preliminary results (13 mice/condition) suggest that the frequency of LT Scid repopulating cells (SRC) was increased by 27% in the M-OST CM culture vs. SFM control (frequency of 1/2878 vs. 1/3626 of day 0 starting cell). Next, we set to determine how M-OST CM increases the thrombopoietic activity of expanded CB HSPC. First, cytometry analysis (CD34, CD38, CD45RA, CD90 and CD123) revealed that M-OST CM preferentially increased the expansion of common myeloid progenitors (CMP, 8-fold, p=0.2, n=3), megakaryocyte-erythroid progenitors (MEP, 7-fold, p=0.02) and granulocyte-macrophage progenitors (GMP, 9-fold, p=0.02) vs. SFM control. Expansion of HSC-enriched cells was unchanged while that of multipotent progenitors (MPP) was reduced 2-fold (p<0.05). We set to confirm these results by culturing purified primary CB HSPC subsets in M-OST CM or SFM; M-OST CM induced greater expansions of MEP (3-fold), GMP (˃10-fold) while expansion in MPP cultures was greater with SFM control (1.5-fold). No growth was noted with the HSC and CMP cultures likely due to low sort yields. To complement these findings, we measured the expansion of myeloid CFU progenitors and long term culture-initiating cells (LTC-IC) by LDA. The total number of CFU was increased 2.4-fold (<0.02, n=4) by M-OST CM due mostly to increased expansion of CFU-G/GM colonies (2-fold, p<0.05) and BFU-E (2-fold, p=0.05). M-OST CM also sustained a 3.4-fold increase in LTC-IC expansion vs. SFM culture, though this finding remains to be confirmed in ongoing experiments. Finally, we investigated the effect of M-OST CM on the chemotaxis of HSPC toward SDF-1 since we previously reported increased expression of its receptor CXCR4 on CB cells in M-OST CM cultures. M-OST CM HSPC showed a modest 15% increase in migration vs. SFM control (n=4, p=0.10). In conclusion, our results demonstrate that the ST and LT hPLT engraftment activities of ex vivo expanded CB HSPC can be increased 5-6 folds by the use of M-OST CM due to the expansion of immature CB HSPC subsets including perhaps LT SRC. Whether M-OST CM can also modulate the homing activity of HSPC remains unclear. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Na Yoon Paik ◽  
Grace E. Brown ◽  
Lijian Shao ◽  
Kilian Sottoriva ◽  
James Hyun ◽  
...  

Over 17,000 people require bone marrow transplants annually, based on the US department of Health and Human Services (https://bloodcell.transplant.hrsa.gov). Despite its high therapeutic value in treatment of cancer and autoimmune disorders, transplant of hematopoietic stem cells (HSC) is limited by the lack of sufficient source material due primarily inadequate expansion of functional HSCs ex vivo. Hence, establishing a system to readily expand human umbilical cord blood or bone marrow HSCs in vitro would greatly support clinical efforts, and provide a readily available source of functional stem cells for transplantation. While the bone marrow is the main site of adult hematopoiesis, the fetal liver is the primary organ of hematopoiesis during embryonic development. The fetal liver is the main site of HSC expansion during hematopoietic development, furthermore the adult liver can also become a temporary extra-medullary site of hematopoiesis when the bone marrow is damaged. We have created a bioengineered micropatterned coculture (MPCC) system that consists of primary human hepatocytes (PHHs) islands surrounded and supported by 3T3-J2 mouse embryonic fibroblasts. Long-term establishment of stable PHH-MPCC allows us to culture and expand HSC in serum-free medium supplemented with pro-hematopoietic cytokines such as stem cell factor (SCF) and thrombopoietin (TPO). HSCs cultured on this PHH-MPCC microenvironment for two weeks expanded over 200-fold and formed tight clusters around the periphery of the PHH islands. These expanded cells also retained the expression of progenitor markers of Lin-, Sca1+, cKit+, as well as the long-term HSC phenotypic markers of CD48- and CD150+. In addition to the phenotypic analysis, the expanded cells were transplanted into lethally irradiated recipient mice to determine HSC functionality. The expanded cells from the PHH-MPCC microenvironment were able to provide multi-lineage reconstitution potential in primary and secondary transplants. With our bioengineered MPCC system, we further plan to scale up functional expansion of human HSC ex vivo and to better understand the mechanistic, cell-based niche factors that lead to maintenance and expansion HSC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Thao Trinh ◽  
James Ropa ◽  
Arafat Aljoufi ◽  
Scott Cooper ◽  
Edward F. Srour ◽  
...  

The hematopoietic system is maintained by the hematopoetic stem and progenitor cells (HSCs/HPCs), a group of rare cells that reside in a hypoxic bone marrow (BM) microenvironment. Leptin (Lep) is well-known for its neuroendocrine and immunological functions, and its receptor (Lepr) has been studied extensively in the BM niche cells. Yet, its biological implications in HSC/HPC biology remained largely unknown. In this study, we hypothesized that Lepr-expressing HSCs/HPCs are functionally and transcriptomically distinct from their negative counterparts. To test our hypothesis, we utilized both in vitro and in vivo approaches. We first employed Fluorescence-activated cell sorting (FACS) analysis to confirm expression of Lepr on HSCs/HPCs in adult mouse BM. We then isolated equal numbers of Lepr+Lineage-Sca1+cKit+ (LSK cells - a heterogenous population of long-term, short-term HSCs and multipotent HPCs) and Lepr-LSK cells from C57BL/6 (CD45.2+) mouse BM to perform colony-forming unit (CFU) assay and competitive transplantation assay, which also included using competitor cells from BoyJ (CD45.1+) unseparated BM and lethally-irradiated F1 (CD45.1+CD45.2+) as hosts. To determine whether Lepr can further hierarchize HSCs into two distinct populations, we repeated the competitive transplants using freshly isolated C57BL/6 Lepr+HSCs or Lepr-HSCs cells instead. At the end of primary transplants, whole BM were analyzed for donor chimerisms in the peripheral blood (PB) and BM as well as transplanted in a non-competitive fashion into lethally-irradiated secondary recipients. To gain mechanistic insights, we assessed homing potential as homing plays a role in increased engraftment. We also performed bulk RNA-seq using freshly sorted BM Lepr+HSCs or Lepr-HSCs to elucidate potential molecular pathways that are responsible for the differences in their functional capacity. By phenotypic studies, our FACS analyses showed that Lepr+ cells represented a smaller population within the hematopoietic compartment in the BM. However, HSCs contained a higher percentage of Lepr+ cells than other HPC populations. By functional assessments, Lepr+LSK cells were more highly enriched for colony-forming progenitor cells in CFU assay as compared to Lepr-LSK cells. Interestingly, Lepr+LSK cells exhibited more robust engraftment capability in primary transplants and substantial self-renewal capacity in secondary transplants throughout different time points in both PB and BM. In addition, Lepr+HSCs showed significantly higher donor chimerisms in PB month 1, 2, 4 and BM month 4 with similar lineage output compared to Lepr-HSCs. Higher engraftment could be due to increased homing of HSCs to the BM; however, Lepr+HSCs and Lepr-HSCs showed similar homing capacity as well as levels of surface CXCR4 expression. Molecularly, Fast Preranked Gene Set Enrichment Analysis (FGSEA) showed that Lepr+HSCs were enriched for Type-I Interferon and Interferon-gamma response pathways with Normalized Enrichment Scores of 2 or higher. Lepr+HSC transcriptomic study also revealed that these cells as compared to Lepr-HSCs expressed significantly higher levels of genes involved in megakaryopoiesis and proinflammatory immune responses including the NF-κB subunits (Rel and Relb). Interestingly, both IFN-γ and NF-κB signalings have been demonstrated to be critical for the emergence of HSCs from the hemogentic endothelium during embryonic development. In summary, although Lepr+LSK cells occupied a minor fraction compared to their negative counterparts in the BM, they possessed higher colony-forming capacity and were more highly enriched for long-term functional HSCs. In line with this, Lepr+HSCs engrafted significantly higher and self-renewed more extensively than Lepr-HSCs, suggesting that Lepr not only can be used as a marker for functional HSCs but also further differentiate HSCs into two functionally distinguishable populations. Intriguingly, Lepr+HSCs were characterized with a proinflammatory transcriptomic profile that was previously suggested to be critical for the development of HSCs in the embryo. All together, our work demonstrated that Lepr+HSCs represent a subset of highly engrafting adult BM HSCs with an embryonic-like transcriptomic signature. This can have potential therapeutic implications in the field of hematopoietic transplantation as Lepr is highly conserved between mice and human. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2544-2544
Author(s):  
Barbara Varnum-Finney ◽  
Irwin D. Bernstein

Abstract Abstract 2544 Poster Board II-521 Notch regulates numerous lineage choices during vertebrate development, and although ex vivo studies suggest that Notch regulates hematopoietic stem cell (HSC) and multipotential progenitor (MPP) differentiation, a functional role for Notch in HSC/MPP self renewal in vivo remains controversial. We previously reported a Notch2 signaling role during bone marrow (BM) recovery following injection with chemotherapeutic agent 5-fluorouracil (5FU), where Notch2 signaling impedes myeloid differentiation, allowing for generation of sufficient numbers of progenitor cells. Herein, we examine a Notch2 signaling role in HSC as well as progenitor cell self renewal by enumerating generation of HSC and short term repopulating cells in lethally irradiated recipients (Ly5.1+) transplanted with a limiting number (5 × 105) of BM cells from either control mice or from mice bearing Cre-LoxP-inducible Notch2 deletions (Ly5.2+). In recipient mice transplanted with control BM, recovery was evident from Day11 to Day13 post transplant when significantly more than the initial post-irradiation number of 9.0 × 106 BM cells was seen in the recovering marrow. In recovering mice, recipients receiving control cells generated more BM cells than did recipients receiving Notch2-deficient cells. Furthermore, mice receiving control cells generated significantly more donor Sca-1+c-kit+ (SK+) cells than recipients receiving Notch2-deficient BM cells [44.4×103 (s.e.m.+/− 14×103) vs 8.2×103 (s.e.m.+/−1.5×103), respectively, p=0.001]. To quantitate the generation of short term repopulating cells, secondary radioprotection assays were performed. Irradiated secondary recipient mice received 1×106 BM cells from the primary recipients previously transplanted with either control cells or Notch2-deficient cells. Secondary recipients receiving cells from primary control transplants survived significantly longer than those receiving cells from primary Notch2-deficient transplants or than irradiated mice receiving no cells (n=4, p=0.01), indicating Notch2 is required to generate sufficient numbers of cells to provide radioprotection. To quantitate long term HSC generated in the recovering marrow, competitive repopulating units (CRU) were enumerated by performing secondary transplants in which 4-doses of BM cells ranging from 4 × 104 to 5 × 106 cells from primary transplants were injected into secondary recipients along with 1 × 105 Ly5.1+ competing cells. Enumeration of CRU at 2 weeks post transplant confirmed the number of short term repopulating cells was significantly decreased in mice transplanted with Notch2-deficient cells compared to mice transplanted with control cells [(1.3 CRU vs 8.8 CRU / 1×106 BM cells, respectively), p=0.0004)]. Enumeration of CRU at 9 weeks post transplant indicated HSC numbers were also significantly decreased in mice transplanted with Notch2-deficient cells compared to mice transplanted with control cells [(0.1 CRU vs 0.7 CRU / 1×106 BM cells, respectively), p=0.02]. Taken together, our results demonstrate a role for Notch2 in enhancing generation of long term HSC as well as short term repopulating cells and suggests that Notch2 signaling regulates a hierarchy of events to assure the initial repopulation by HSC and MPP, while delaying myeloid differentiation during hematopoietic regeneration. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 641-641
Author(s):  
Steffen Boettcher ◽  
Rahel Gerosa ◽  
Ramin Radpour ◽  
Markus G. Manz

Abstract Abstract 641 Severe systemic infections evoke a number of characteristic clinical signs such as fever, neutrophilia and the appearance of immature myeloid precursors in the circulation (left-shift). This reflects a well-regulated hematopoietic response program to enhance myeloid cell output during times of increased hematopoietic demand, a condition which is referred to as 'emergency myelopoiesis'. Important molecular components of the emergency myelopoiesis cascade, such as cytokines and transcription factors involved, have been elucidated. However, the initial steps of emergency myelopoiesis involving pathogen recognition and translation into accelerated bone marrow (BM) myelopoiesis have only been inferred from findings on Toll-like receptor (TLR) expression on immature hematopoietic stem and progenitor cells (HSPCs) as well as on mature hematopoietic cells (e.g. macrophages). Accordingly, it has been assumed that both immature as well as mature hematopoietic cells are involved in sensing infection and inducing emergency myelopoiesis directly and indirectly, respectively. Surprisingly, by generating reciprocal BM chimeric animals mice with TLR4−/− hematopoiesis on a wild-type (WT) nonhematopoietic background (TLR4−/−→WT mice) and WT hematopoiesis on a TLR4−/− nonhematopoietic background (WT→TLR4−/−mice), we demonstrated that LPS-Induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells (Boettcher et al., J Immunol. 2012 Jun 15;188(12):5824–8.). However, the precise identity and localization of the nonhematopoietic cell type crucial for sensing gramnegative infection-derived lipopolysaccharide (LPS) has remained elusive to date. We now have addressed this fundamental question using BM transplantation experiments and Cre-loxP recombination technology. BM chimeric mice with a myeloid differentiation primary response gene 88 (Myd88)-deficiency in the hematopoietic lineage (MYD88−/−→WT mice) showed a normal LPS response indistinguishable to control (WT→WT) mice, while knocked out Myd88 within the nonhematopoietic compartment (WT→MYD88−/− mice) led to a non-responsiveness towards LPS similar to controls (Myd88−/−→Myd88−/− mice). These results are in line with our earlier data, thus confirming the critical role of the TLR4/MYD88 pathway in nonhematopoietic cells for the induction of emergency myelopoiesis. In order to specifically delete TLR-MyYD88-downstream signaling in various nonhematopoietic cells including BM Nestin+ mesenchymal stem cells (MSCs) and their progeny, perivascular cells, endothelial cells, and hepatocytes, we generated Nes-Cre;Myd88fl/fl, Pdgfrb-Cre;Myd88fl/fl, Tek-Cre;Myd88fl/fl, and Alb-Cre;Myd88fl/fl mice, respectively. We observed a normal increase in the frequency of BM CD11b+Gr-1low immature myeloid precursors accompanied by a decrease of BM CD11b+Gr-1high mature myeloid cells upon LPS stimulation characteristic for efficient emergency myelopoiesis in Nes-Cre;Myd88fl/fl, Pdgfrb-Cre;Myd88fl/fl, and Alb-Cre;Myd88fl/fl mice as compared to control mice. Furthermore, we measured highly-elevated plasma G-CSF levels in these mouse strains upon LPS injection. Hence, intact TLR signaling in mesenchymal stromal cells incl. Nestin+ MSCs, perivascular cells as well as hepatocytes is dispensable for induction of emergency myelopoiesis. Strikingly, Tek-Cre;Myd88fl/fl mice were completely non-responsive towards LPS stimulation as assessed by the above-mentioned parameters. Our results thus demonstrate a fundamental and unanticipated role of the endothelium for sensing of systemically spread pathogens and subsequent stimulation of BM emergency myelopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2463-2463
Author(s):  
Weihong Yin ◽  
Christopher D Porada ◽  
Stephen Walker ◽  
Colin Bishop ◽  
Graca Almeida-Porada

Abstract Somatic cell reprogramming to the hematopoietic lineage, either through a pluripotent state or directly, opens the possibility of production of a ready source of autologous hematopoietic stem cells (HSC) that can be used to treat/cure a wide variety of blood disorders. While it has previously been shown that dermal fibroblasts (HFF) can be directly reprogrammed to the hematopoietic lineage, the efficiency was relatively low and the resultant hematopoietic cells lacked multilineage differentiative potential. Stro1(+) isolated stromal progenitors (SIPs) can easily be isolated from the bone marrow (BM) and expanded ex-vivo to obtain clinically significant numbers of cells. In similarity to HSC, SIPs are derived from the mesoderm, and are intimately linked with HSC specification during ontogeny. As such, they are likely to be epigenetically closer to HSC than HFF, and therefore good candidates for reprogramming into hematopoietic cells. To verify the uniqueness of SIPs for reprogramming, we transduced SIPs and HFF with OCT4 and/or RUNX1C, a master transcription factor (TF) that triggers the developmental onset of definitive hematopoiesis, in the following combinations: 1) OCT4 alone; 2) RUNX1C alone; or 3) OCT4+RUNX1C. We then performed a timeline of gene/cell surface marker expression (using microarray, qRT-PCR, and flow cytometry) from day 3-16 post-transduction. Visual inspection of the cultures showed that, while reprogrammed colonies began to appear in SIPs cultures at day 9, no colonies were seen during this time period in HFF cultures. Flow cytometry and molecular analyses of colonies obtained from OCT4+RUNX1C combination demonstrated that expression of CD41, the earliest marker of commitment to the hematopoietic lineage, commenced within only 3-4 days and peaked at day 5-6, by which time ∼20% of SIPs expressed this marker. This peak in CD41 expression coincided with commencement of expression of CD34 and CD45, and maximal induction of several hematopoiesis-specific TFs and phenotypic markers such as PU.1, HOXB4, GATA2, MIXL, WNT3, KDR, CDX4, which occurred at 1-3 logs higher levels in SIPs than HFF. Further studies demonstrated that the chromatin remodeling function of OCT4 could be replaced with the histone methyltransferase inhibitor Bix-01294, with the combination of RUNX1C and Bix-01294 inducing levels of CD34 and CD41 expression by day 5 that were similar to those achieved with RUNX1C plus OCT4. The present studies thus take several important steps towards making the promise of producing autologous hematopoietic cells for transplantation via direct reprogramming a reality. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Bo O Zhou ◽  
Lei Ding ◽  
Sean J Morrison

Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Alexandra A Soukup ◽  
Daniel R Matson ◽  
Kirby D Johnson ◽  
Emery H Bresnick

The transcription factor GATA2 is essential for the generation and function of hematopoietic stem and progenitor cells (HSPCs), erythroid precursors, and endothelial cells. A conserved intronic GATA2 enhancer, 9.8 kb downstream of the transcriptional start site (+9.5 in the mouse), is mutated in patients with GATA2 deficiency syndrome. Patient mutations within this region include a c.1017+512del28 deletion, removing E-box and GATA motifs, c.1017+532T&gt;A that disrupts the E-box, and, most frequently, C&gt;T in a 3' Ets motif (c.1017+572C&gt;T) (Soukup and Bresnick, 2020). Homozygous mutation of the Ets motif in mice allows normal developmental and steady-state hematopoiesis but impairs hematopoietic regeneration (Soukup et al., 2019). In addition to HSPCs, GATA2 is expressed in non-hematopoietic cells in the bone marrow niche, e.g. endothelial cells and neurons (Katsumura et al., 2017). As the +9.5(Ets) mutation is not hematopoietic cell-specific, we asked whether regenerative defects of +9.5(Ets)-/- mice reflect disruption of cell-intrinsic or -extrinsic activities. In a competitive transplant assay, +9.5(Ets)-/- HSPCs were 3-fold less effective at long-term reconstitution than WT, and mechanistic studies indicated that the motif functions in hematopoietic cells to promote regeneration (Soukup et al., 2019). We conducted a reciprocal transplant of WT HSPCs into irradiated WT or +9.5(Ets)-/- recipients and quantified reconstitution by peripheral blood counts 4, 8, 12, and 16 weeks post-transplant. This analysis revealed no significant differences between WT and mutant recipients. At week 16, donor-derived leukocytes were 92% (+9.5(Ets)-/- recipients) and 96% (WT recipients) of total; the contribution did not differ significantly at any time. After 16 weeks, animals were sacrificed and HSPCs analyzed, confirming no significant alterations in mutant recipients. These results rigorously establish the mutant microenvironment as competent to support WT HSPC functions, emphasizing the critical hematopoietic cell-intrinsic activity of the +9.5 Ets motif. As the +9.5 Ets motif promotes regenerative hematopoiesis, and the +9.5 E-box;GATA is essential for developmental hematopoiesis, we devised a strategy to leverage these activities to innovate new models for GATA2 function in adult HSPCs. We generated compound heterozygous (CH) mice containing a mutant E-box;GATA sequence on one allele and a mutant Ets motif on the other allele. CH mice survived past weaning, with adults exhibiting significant steady-state defects, including a 4.4-fold decrease in GATA2hi megakaryocytes (p &lt; 0.0001) and 20% decrease (p = 0.02) in platelets. To test whether the CH mutations compromise regeneration, we quantified HSPC populations in bone marrow from mice treated with vehicle or 5-fluorouracil (FU) 9- and 10- days post treatment. Steady-state HSC (Lin−Sca1+Kit+CD48-CD150+) levels were unaltered in CH animals. Days 9 and 10 post-FU treatment, WT HSC levels increased 17- (p = 0.0006) and 18-fold (p = 0.0007) relative to vehicle-treated animals. CH HSCs did not expand and were &lt;10% of the steady-state level. 7 days post-FU treatment, Gata2 expression increased 1.9-fold in WT HSCs (p = 0.029); this response was abrogated in CHs. We asked if CH HSCs were capable of reconstitution in a competitive transplant assay. Four weeks post-transplant, CH progeny were 40-fold lower than WT (p &lt; 0.0001). At 8-, 12-, and 16-weeks post-transplant, CH contribution was reduced 90-, 266-, and 280-fold, respectively. Defects persisted upon secondary transplantation, demonstrating that the defects cannot be restored by passage through a WT microenvironment. Thus, CH and +9.5(Ets)-/- mice share phenotypes, but CH mutations more severely impair regeneration and long-term reconstituting activity. This supports a paradigm in which the Ets motif and additional +9.5 sequences are critical for regeneration. This study revealed molecular determinants for steady-state and regenerative enhancer functions to enable discovery of +9.5-like enhancers with common operating mechanisms. We predict that such enhancers reside at a GATA2-regulated gene cohort, including genes that will reveal new mechanisms in hematopoiesis. As CH mice are poised for hematopoietic collapse, but can be propagated as relatively normal adults, studies are underway with this unique model to identify triggers of bone marrow failure and leukemogenesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document