scholarly journals Primed CD4 T Cells to an Intracellular Alloantigen Facilitate Alloimmunization Following Subsequent Transfusion

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 768-768
Author(s):  
Seema R Patel ◽  
Ashley L Bennett ◽  
Patricia E Zerra ◽  
Satheesh Chonat ◽  
Cheryl Maier ◽  
...  

Abstract Background: While red blood cell (RBC) alloantibodies can increase the probability of transfusion-related complications, not all patients become alloimmunized following transfusion. Several factors have been hypothesized to govern susceptibility to alloimmunization, including general differences in immune function and the potential impact of recipient inflammation at the time of transfusion. However, as individuals that do generate alloantibodies appear to experience an increased rate of additional alloantibody formation following subsequent transfusion, distinct immunological responses induced following exposure to certain antigens expressed by transfused RBCs may directly facilitate the development of alloantibodies following subsequent transfusion. Thus, while CD4 T cell help classically occurs through direct recognition of a peptide that resides within a target B cell antigen, these clinical observations suggest that CD4 T cells that respond to one RBC antigen may directly facilitate immunity to a completely distinct RBC alloantigen following subsequent transfusion. As RBCs express a variety of possible polymorphic antigens, both inside RBCs and at the RBC surface, exposure to alloantigens within RBCs may possess the capability to induce a CD4 T cell response that would be undetectable by clinical serological analysis, but which may facilitate subsequent alloimmunization. To test this, we determined whether cellular adaptive immunity to an intracellular alloantigen might enhance alloimmunization following subsequent RBC transfusion. Methods: B6 recipients were immunized three times a week apart against an intracellular antigen, green fluorescent protein (GFP). Two weeks following the last immunization, recipients were transfused with RBCs expressing the model antigen HOD (a fusion protein consisting of hen egg lysozyme fused to ovalbumin and human Duffy b) and GFP (HOD x GFP RBCs) or RBCs expressing the human Glycophorin A (hGPA) and GFP antigens (hGPA x GFP RBCs). Serum was collected at days 7, 14, 21 and 28 post-transfusion and the levels of anti-HOD or anti-GPA antibodies were determined by incubation of serum with HOD RBCs, GPA RBCs or B6 RBCs, followed by detection with fluorescently labeled anti-IgG antibodies. The adjusted mean fluorescent intensity (MFI) for anti-HOD or anti-GPA antibodies was calculated by subtracting the MFI observed following incubation with B6 RBCs from the MFI observed following incubation with HOD or GPA RBCs, respectively. Results: Recipients that underwent GFP immunization experienced a statistically significant enhancement of anti-HOD IgG compared to non-GFP immunized recipients following subsequent transfusion of HOD x GFP RBCs (p < 0.05), strongly suggesting that prior exposure to a single intracellular antigenic determinant can enhance antibody formation following subsequent exposure to RBCs expressing both the intracellular antigen and a clinically relevant surface antigen. To determine whether immunological priming toward an intracellular antigen can impact RBC alloimmunization toward other cell surface RBC alloantigens, we likewise transfused recipients that had been previously immunized against GFP with RBCs that express hGPA and GFP. Similar to the impact of prior GFP immunization on HOD alloimmunization, prior GFP immunization rendered recipients responsive to the hGPA antigen following transfusion of hGPA x GFP RBCs. Importantly, non-GFP immunized recipients were non-responsive to the hGPA antigen regardless of being expressed on the same RBCs as GFP (p < 0.05), suggesting that prior immunization toward an intracellular antigen may not only enhance subsequent alloimmunization in previously alloimmunized individuals, but also render non-responding recipients responsive to RBC-induced alloimmunization. Conclusion: These results demonstrate that immunity to an intracellular alloantigen can directly influence the immunological outcome following exposure to a subsequent extracellular RBC alloantigen. Moreover, these findings suggest a mechanism whereby alloantibody responders may exhibit an increased rate of additional alloantibody formation and highlight a previously under appreciated mechanism by which cellular adaptive immunity can impact the ability of an individual to respond to unrelated immunogens. Disclosures Chonat: Agios Pharmaceuticals: Honoraria.

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2053-2061 ◽  
Author(s):  
Laura Crompton ◽  
Naeem Khan ◽  
Rajiv Khanna ◽  
Laxman Nayak ◽  
Paul A. H. Moss

Antigen-specific CD8+ cytotoxic T cells often demonstrate extreme conservation of T-cell receptor (TCR) usage between different individuals, but similar characteristics have not been documented for CD4+ T cells. CD4+ T cells predominantly have a helper immune role, but a cytotoxic CD4+ T-cell subset has been characterized, and we have studied the cytotoxic CD4+ T-cell response to a peptide from human cytomegalovirus glycoprotein B presented through HLA-DRB*0701. We show that this peptide elicits a cytotoxic CD4+ T-cell response that averages 3.6% of the total CD4+ T-cell repertoire of cytomegalovirus-seropositive donors. Moreover, CD4+ cytotoxic T-cell clones isolated from different individuals exhibit extensive conservation of TCR usage, which indicates strong T-cell clonal selection for peptide recognition. Remarkably, this TCR sequence was recently reported in more than 50% of cases of CD4+ T-cell large granular lymphocytosis. Immunodominance of cytotoxic CD4+ T cells thus parallels that of CD8+ subsets and suggests that cytotoxic effector function is critical to the development of T-cell clonal selection, possibly from immune competition secondary to lysis of antigen-presenting cells. In addition, these TCR sequences are highly homologous to those observed in HLA-DR7+ patients with CD4+ T-cell large granular lymphocytosis and implicate cytomegalovirus as a likely antigenic stimulus for this disorder.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3110-3110
Author(s):  
Erwan R. Piriou ◽  
Christine Jansen ◽  
Karel van Dort ◽  
Iris De Cuyper ◽  
Nening M. Nanlohy ◽  
...  

Abstract Objective: EBV-specific CD8+ T cells have been extensively studied in various settings, and appear to play a major role in the control of EBV-related malignancies. In contrast, it is still unclear whether EBV-specific CD4+ T cells play a role in vivo. To study this question, an assay was developed to measure the CD4+ T-cell response towards two EBV antigens, in both healthy (n=14) and HIV-infected subjects (n=23). In addition, both HAART-treated (n=12) and untreated HIV+ individuals (n=14) - including progressors to EBV-related lymphoma - were studied longitudinally. Methods: EBV-specific CD4+ T cells were stimulated with peptide pools from latent protein EBNA1 and lytic protein BZLF1, and detected by measurement of IFNg-production. Results: After direct ex vivo stimulation, EBNA1 or BZLF1-specific IFNg- (and/or IL2) producing CD4+ T cell numbers were low, and measurable in less than half of the subjects studied (either HIV- and HIV+). Therefore, PBMC were cultured for 12 days in the presence of peptides and IL2 (from day 3), and then restimulated with peptides, allowing specific and reproducible expansion of EBV-specific CD4+ T cells, independent of HLA type and ex vivo antigen processing. Interestingly, numbers of EBV-specific CD4+ T cells inversely correlated with EBV viral load, implying an important role for EBV-specific CD4+ T cells in the control of EBV in vivo. Untreated HIV-infected individuals had a lower CD4+ T cell response to EBNA1 and BZLF1 as compared to healthy EBV carriers and HAART-treated HIV+ subjects. In longitudinal samples, EBNA1-specific, but not BZLF1-specific T-cell numbers increased after HAART, while EBV load was not affected by treatment. In all the progressors to EBV-related lymphoma, EBV-specific CD4+ T cells were lost at least 24 months before lymphoma diagnosis. Conclusions: Both cross-sectional and longitudinal data suggest an important role for EBV-specific CD4+ T cells in the control of EBV-related malignancies. Furthermore, it seems that HAART treatment leads to recovery of EBNA1-specific, but not BZLF1-specific CD4+ T-cell responses, implying changes in the latency pattern of EBV, despite an unaltered cell-associated EBV DNA load. Thus, early HAART treatment might prevent loss of specific CD4+ T-cell help and progression to NHL.


Author(s):  
Sophia Schulte ◽  
Janna Heide ◽  
Christin Ackermann ◽  
Sven Peine ◽  
Michael Ramharter ◽  
...  

Abstract Relatively little is known about the ex vivo frequency and phenotype of the P. falciparum-specific CD4+ T cell response in humans. The exported protein 1 (EXP1) is expressed by plasmodia at both, the liver stage and blood stage, of infection making it a potential target for CD4+ and CD8+ effector T cells. Here, a fluorochrome-labelled HLA-DRB1*11:01-restriced MHC class II tetramer derived from the P. falciparum EXP1 (aa62-74) was established for ex vivo tetramer analysis and magnetic bead enrichment in ten patients with acute malaria. EXP1-specific CD4+ T cells were detectable in nine out of ten (90%) malaria patients expressing the HLA-DRB1*11 molecule with an average ex vivo frequency of 0.11% (0-0.22%) of total CD4+ T cells. The phenotype of EXP1-specific CD4+ T cells was further assessed using co-staining with activation (CD38, HLA-DR, CD26), differentiation (CD45RO, CCR7, KLRG1, CD127), senescence (CD57) and co-inhibitory (PD-1, TIGIT, LAG-3, TIM-3) markers as well as the ectonucleotidases CD39 and CD73. EXP1-specific tetramer+ CD4+ T cells had a distinct phenotype compared to bulk CD4+ T cells and displayed a highly activated effector memory phenotype with elevated levels of co-inhibitory receptors and activation markers: EXP1-specific CD4+ T cells universally expressed the co-inhibitory receptors PD-1 and TIGIT as well as the activation marker CD38 and showed elevated frequencies of CD39. These results demonstrate that MHC class II tetramer enrichment is a sensitive approach to investigate ex vivo antigen-specific CD4+ T cells in malaria patients that will aid further analysis of the role of CD4+ T cells during malaria.


2005 ◽  
Vol 35 (3) ◽  
pp. 796-805 ◽  
Author(s):  
Erwan?R. Piriou ◽  
Karel van Dort ◽  
Nening?M. Nanlohy ◽  
Marinus?H. van Oers ◽  
Frank Miedema ◽  
...  

2020 ◽  
Vol 4 (s1) ◽  
pp. 6-7
Author(s):  
Rachel Quinn Muir ◽  
Barbara J. Klocke ◽  
Kasi C. McPherson ◽  
Jeremy B. Foote ◽  
Jennifer S. Pollock ◽  
...  

OBJECTIVES/GOALS: The overall goal of this study was to determine the effect of early life stress (ELS) on the intestinal CD4+ T cell immune compartment, at homeostasis and after induction of experimental Inflammatory Bowel Disease (IBD). METHODS/STUDY POPULATION: We used a mouse model of ELS, maternal separation with early weaning (MSEW). We used IL-10 reporter mice to enable analysis of IL-10-producing cells. Mice were examined on postnatal day 28 to determine the impact of ELS on gut regulatory T cells. Plasma levels of corticosterone (rodent stress response hormone) was determined by ELISA. Colitis was induced in MSEW and normal rear (NR) mice via intraperitoneal injection of α-IL-10R every 5 days until day 15. Mice were euthanized on days 20 and 30. Colonic tissue sections were stained for histological analysis. Remaining tissue was further processed for flow cytometric analysis of CD4+ T cells and innate lymphoid cells. RESULTS/ANTICIPATED RESULTS: Plasma corticosterone was elevated in MSEW mice compared to their NR counterparts at 4 weeks of age. We observed that the MSEW stress protocol does not affect the baseline colonic CD4+ T cell or innate lymphoid cell populations. There was a reduction in the intestinal CD4+ T cells and regulatory T cells on day 20 in α-IL-10R MSEW mice compared to NR counterparts. This difference disappeared by day 30. Histological scoring showed no difference in disease severity between α-IL-10R treated MSEW and NR mice on day 20. However, on day 30, when α-IL-10R NR mice are recovering from colitis, MSEW mice showed persistent histological inflammation, mainly attributable to sustained epithelial damage. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that ELS prolongs intestinal inflammation and impairs epithelial repair. Future studies will focus on elucidating the mechanisms responsible for ELS-dependent impairment of mucosal repair in experimental colitis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
James Ding ◽  
Samantha L. Smith ◽  
Gisela Orozco ◽  
Anne Barton ◽  
Steve Eyre ◽  
...  

AbstractCD4+ T-cells represent a heterogeneous collection of specialised sub-types and are a key cell type in the pathogenesis of many diseases due to their role in the adaptive immune system. By investigating CD4+ T-cells at the single cell level, using RNA sequencing (scRNA-seq), there is the potential to identify specific cell states driving disease or treatment response. However, the impact of sequencing depth and cell numbers, two important factors in scRNA-seq, has not been determined for a complex cell population such as CD4+ T-cells. We therefore generated a high depth, high cell number dataset to determine the effect of reduced sequencing depth and cell number on the ability to accurately identify CD4+ T-cell subtypes. Furthermore, we investigated T-cell signatures under resting and stimulated conditions to assess cluster specific effects of stimulation. We found that firstly, cell number has a much more profound effect than sequencing depth on the ability to classify cells; secondly, this effect is greater when cells are unstimulated and finally, resting and stimulated samples can be combined to leverage additional power whilst still allowing differences between samples to be observed. While based on one individual, these results could inform future scRNA-seq studies to ensure the most efficient experimental design.


Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 965-974 ◽  
Author(s):  
Filippos Porichis ◽  
Douglas S. Kwon ◽  
Jennifer Zupkosky ◽  
Daniel P. Tighe ◽  
Ashley McMullen ◽  
...  

Abstract Defining the T helper functions impaired by programmed death–1 (PD-1) is crucial for understanding its role in defective HIV control and determining the therapeutic potential of targeting this inhibitory pathway. We describe here the relationships among disease stage, levels of PD-1 expression, and reversibility of CD4 T-cell impairment. PD-L1 blockade in vitro enhanced HIV-specific production of Th0 (IL-2), Th1 (IFN-γ), Th2 (IL-13), and TFH (IL-21) cytokines by CD4 T cells. PD-L1 blockade caused an early increase in cytokine transcription and translation that preceded cell proliferation. Although the impact of PD-L1 blockade on cytokine expression and, to a lesser extent, cell proliferation was associated with markers of disease progression, restoration of cytokine secretion was also observed in most subjects with undetectable viremia. PD-L1 blockade restored cytokine secretion in both PD-1intermediate and PD-1high sorted CD4 T-cell subsets. Compared with PD-1high HIV-specific CD8 T cells, PD-1high HIV-specific CD4 T cells showed lower expression of the inhibitory molecules CD160 and 2B4, demonstrating marked differences in expression of inhibitory receptors between T-cell subsets. These data show that PD-1 impairs HIV-specific T helper responses both by limiting expansion of these cells and by inhibiting effector functions of multiple differentiated CD4 T-cell subsets.


2006 ◽  
Vol 203 (12) ◽  
pp. 2661-2672 ◽  
Author(s):  
Marie-Claire Gauduin ◽  
Yi Yu ◽  
Amy Barabasz ◽  
Angela Carville ◽  
Mike Piatak ◽  
...  

We investigated simian immunodeficiency virus (SIV)-specific CD4+ T cell responses in rhesus macaques chronically infected with attenuated or pathogenic SIV strains. Analysis of SIVΔnef-infected animals revealed a relatively high frequency of SIV-specific CD4+ T cells representing 4–10% of all CD4+ T lymphocytes directed against multiple SIV proteins. Gag-specific CD4+ T cells in wild-type SIV-infected animals were 5–10-fold lower in frequency and inversely correlated with the level of plasma viremia. SIV-specific CD4+ cells from SIVΔnef animals were predominantly CD27−CD28−CD45RAlowCCR7−CCR5−, consistent with an effector–memory subset, and included a fully differentiated CD45RA+CCR7− subpopulation. In contrast, SIV-specific CD4+ T cells from SIV-infected animals were mostly CD27+CD28+CD45RA−CCR7+CCR5+, consistent with an early central memory phenotype. The CD45RA+CCR7−CD4+ subset from SIVΔnef animals was highly enriched for effector CD4+ T cells, as indicated by the perforin expression and up-regulation of the lysosomal membrane protein CD107a after SIV Gag stimulation. SIV-specific CD4+ T cells in attenuated SIV-infected animals were increased in frequency in bronchioalveolar lavage and decreased in lymph nodes, consistent with an effector–memory T cell population. The ability of SIVΔnef to induce a high frequency virus-specific CD4+ T cell response with direct effector function may play a key role in protective immunity produced by vaccination with attenuated SIV strains.


Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2686-2692 ◽  
Author(s):  
Laila E. Gamadia ◽  
Ester B. M. Remmerswaal ◽  
Jan F. Weel ◽  
Frederieke Bemelman ◽  
René A. W. van Lier ◽  
...  

The correlates of protective immunity to disease-inducing viruses in humans remain to be elucidated. We determined the kinetics and characteristics of cytomegalovirus (CMV)–specific CD4+ and CD8+ T cells in the course of primary CMV infection in asymptomatic and symptomatic recipients of renal transplants. Specific CD8+ cytotoxic T lymphocyte (CTL) and antibody responses developed regardless of clinical signs. CD45RA−CD27+CCR7− CTLs, although classified as immature effector cells in HIV infection, were the predominant CD8 effector population in the acute phase of protective immune reactions to CMV and were functionally competent. Whereas in asymptomatic individuals the CMV-specific CD4+ T-cell response preceded CMV-specific CD8+T-cell responses, in symptomatic individuals the CMV-specific effector-memory CD4+ T-cell response was delayed and only detectable after antiviral therapy. The appearance of disease symptoms in these patients suggests that functional CD8+ T-cell and antibody responses are insufficient to control viral replication and that formation of effector-memory CD4+ T cells is necessary for recovery of infection.


Sign in / Sign up

Export Citation Format

Share Document