scholarly journals Clinical implications of glucocorticoid receptor studies in childhood acute lymphoblastic leukemia

Blood ◽  
1980 ◽  
Vol 56 (6) ◽  
pp. 1036-1040 ◽  
Author(s):  
R Mastrangelo ◽  
R Malandrino ◽  
R Riccardi ◽  
P Longo ◽  
FO Ranelletti ◽  
...  

We have performed in parallel, in 19 children with acute lymphoblastic leukemia, a quantitative determination of glucocorticoid levels, in vitro steroid induced inhibition of nucleic acid precursors, and a short-term clinical trial of corticosteroids alone, before the treatment was given, which included corticosteroids and other drugs. From our results it appears that high glucocorticoid receptor levels in acute lymphoblastic leukemia of children do not guarantee a clinical response to corticosteroids. On the other hand, glucocorticoid receptors may turn out to be of value in predicting a poor response to corticosteroids only if their levels are considerably low.

Blood ◽  
1980 ◽  
Vol 56 (6) ◽  
pp. 1036-1040 ◽  
Author(s):  
R Mastrangelo ◽  
R Malandrino ◽  
R Riccardi ◽  
P Longo ◽  
FO Ranelletti ◽  
...  

Abstract We have performed in parallel, in 19 children with acute lymphoblastic leukemia, a quantitative determination of glucocorticoid levels, in vitro steroid induced inhibition of nucleic acid precursors, and a short-term clinical trial of corticosteroids alone, before the treatment was given, which included corticosteroids and other drugs. From our results it appears that high glucocorticoid receptor levels in acute lymphoblastic leukemia of children do not guarantee a clinical response to corticosteroids. On the other hand, glucocorticoid receptors may turn out to be of value in predicting a poor response to corticosteroids only if their levels are considerably low.


Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4810-4819 ◽  
Author(s):  
Joost C. van Galen ◽  
Roland P. Kuiper ◽  
Liesbeth van Emst ◽  
Marloes Levers ◽  
Esther Tijchon ◽  
...  

AbstractResistance to glucocorticoids (GCs) is a major clinical problem in the treatment of acute lymphoblastic leukemia (ALL), but the underlying mechanisms are not well understood. Although mutations in the glucocorticoid receptor (GR) gene can give rise to therapy resistance in vitro, acquired somatic mutations in the GR are rarely encountered in patients. Here we report that the protein encoded by the BTG1 gene, which is frequently deleted in (pediatric) ALL, is a key determinant of GC responsiveness. Using RNA interference, we show that loss of BTG1 expression causes GC resistance both by decimating GR expression and by controlling GR-mediated transcription. Conversely, reexpression of BTG1 restores GC sensitivity by potentiating GC-induced GR expression, a phenomenon known as GR autoinduction. In addition, the arginine methyltransferase PRMT1, a BTG1-binding partner and transcriptional coactivator, is recruited to the GR gene promoter in a BTG1-dependent manner. These results implicate the BTG1/PRMT1 complex in GR-mediated gene expression and reveal that deregulation of a nuclear receptor coactivator complex can give rise to GC resistance. Further characterization of this complex as part of the GR regulatory circuitry could offer novel opportunities for improving the efficacy of GC-based therapies in ALL and other hematologic malignancies.


Blood ◽  
2010 ◽  
Vol 115 (5) ◽  
pp. 1018-1025 ◽  
Author(s):  
Ronald W. Stam ◽  
Monique L. Den Boer ◽  
Pauline Schneider ◽  
Jasper de Boer ◽  
Jill Hagelstein ◽  
...  

Abstract MLL-rearranged acute lymphoblastic leukemia (ALL) represents an unfavorable type of leukemia that often is highly resistant to glucocorticoids such as prednisone and dexamethasone. Because response to prednisone largely determines clinical outcome of pediatric patients with ALL, overcoming resistance to this drug may be an important step toward improving prognosis. Here, we show how gene expression profiling identifies high-level MCL-1 expression to be associated with prednisolone resistance in MLL-rearranged infant ALL, as well as in more favorable types of childhood ALL. To validate this observation, we determined MCL-1 expression with quantitative reverse transcription–polymerase chain reaction in a cohort of MLL-rearranged infant ALL and pediatric noninfant ALL samples and confirmed that high-level MCL-1 expression is associated with prednisolone resistance in vitro. In addition, MCL-1 expression appeared to be significantly higher in MLL-rearranged infant patients who showed a poor response to prednisone in vivo compared with prednisone good responders. Finally, down-regulation of MCL-1 in prednisolone-resistant MLL-rearranged leukemia cells by RNA interference, to some extent, led to prednisolone sensitization. Collectively, our findings suggest a potential role for MCL-1 in glucocorticoid resistance in MLL-rearranged infant ALL, but at the same time strongly imply that high-level MCL-1 expression is not the sole mechanism providing resistance to these drugs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 11-11 ◽  
Author(s):  
Erich Piovan ◽  
Jiyang Yu ◽  
Pedro Real ◽  
Gawinowicz Mary Ann ◽  
Andrea Califano ◽  
...  

Abstract Abstract 11 Glucocorticoids (GC) play a fundamental role in the treatment of all lymphoid tumors because of their capacity to induce apoptosis in lymphoid progenitor cells. The importance of GC therapy in lymphoid malignancies is underscored by the strong association of GC response with prognosis in childhood acute lymphoblastic leukemia (ALL). Thus, resistance to glucocorticoids is a well recognized feature of poor prognosis in the treatment of childhood ALL. A number of different mechanisms contributing to GC resistance in T-ALL have been proposed including increased expression of antiapoptotic factors such as MCL1, insufficient expression of the glucocorticoid receptor gene (NR3C1), expression of NR3C1 splice variants and loss of NR3C1 auto up-regulation. The development of strategies to reverse glucocorticoid resistance could have a profound impact on the treatment of ALL. Recently, we have showed that inhibition of NOTCH1 with gamma secretase inhibitors (GSIs) sensitized GC-resistant T-ALL cell lines and primary samples to GC-induced apoptosis, supporting a role for GC plus GSIs in the treatment of GC-resistant T-ALLs. Here, we have used a Systems Biology approach to uncover additional pathways involved in the regulation of glucocorticoid receptor activity and glucocorticoid resistance in ALL. In this approach we used Master Regulator Inference analysis (MaRInA), a novel algorithm designed to identify critical regulators of complex biological traits, to analyze the gene expression profiles of pre-treatment T-ALL samples determined to be either sensitive (IC50<150μ g/ml) or resistant (IC50>150μ g/ml) to GC-induced apoptosis in vitro. This analysis identified a transcriptional module controlled by the AKT pathway as the most highly enriched gene set in the resistant samples, strongly suggesting a critical role for PI3K-AKT signaling in the regulation of glucocorticoid resistance in T-ALL. Notably, loss PTEN and constitutive activation of AKT are highly prevalent in T-ALL. Analysis of the effects of AKT in the transcriptional activity of the glucocorticoid receptor and in glucocorticoid receptor induced apoptosis revealed that constitutive activation of AKT results in impaired glucocorticoid receptor activity. Based on these results we hypothesize that AKT could have a direct inhibitory effect on the glucocorticoid receptor. Consistent with this hypothesis, mass spectrometry analysis demonstrated high levels of phosphorylation of the NR3C1 Ser134 in cells harbouring constitutively active AKT. Notably, this residue is within an AKT consensus sequence, XRXXS, and is highly conserved amongst species. Moreover, protein pull down and in vitro kinase assays demonstrated that AKT can directly interact with NR3C1 and mediates its phosphorylation on Ser134. Analysis of the biological relevance of this posttranslational modification showed that constitutively active AKT induces: (i) marked decrease in NR3C1 stability; (ii) retention of NR3C1 in the cytosol in the presence of dexamethasone and (iii) impaired glucocorticoid receptor autoupregulation; all of which can be blocked by the expression of a phosphorylation-deficient serine to alanine (S134A) NR3C1 mutant. Analysis of the effects of AKT activation on the interaction between NOTCH1 signaling and glucocorticoid induced apoptosis showed that AKT can effectively block the reversal of glucocorticoid resistance induced by inhibition of NOTCH1 signaling with GSIs in a Ser134 phosphorylation dependent manner. Finally, we demonstrate that pharmacologic inhibition of AKT can effectively reverse glucocorticoid resistance in T-ALL primary human samples and cell lines. Overall these results identify a direct interaction between the PI3K/AKT pathway and NR3C1 signaling and provide a strong rationale for the clinical testing the combination of AKT inhibitors and glucocorticoids in T-ALL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (1) ◽  
pp. 259-266 ◽  
Author(s):  
G.J.L. Kaspers ◽  
R. Pieters ◽  
C.H. Van Zantwijk ◽  
E.R. VanWering ◽  
A. Van Der Does-Van Den Berg ◽  
...  

As an important determinant of response to chemotherapy, accurate measurement of cellular drug resistance may provide clinically relevant information. Our objectives in this study were to determine the relationship between in vitro resistance to prednisolone (PRD) measured with the colorimetric methyl-thiazol-tetrazolium (MTT) assay, and (1) short-term clinical response to systemic PRD monotherapy, (2) long-term clinical outcome after combination chemotherapy within all patients and within the subgroups of clinical good and poor responders to PRD, and (3) in vitro resistance to 12 other drugs in 166 children with newly diagnosed acute lymphoblastic leukemia (ALL). The 12 clinical poor PRD responders had ALL cells that were median 88-fold more in vitro resistant to PRD than 131 good responders (P = .013). Within all patients, increased in vitro resistance to PRD predicted a significantly worse long-term clinical outcome, at analyses with and without stratification for clinical PRD response, and at multivariate analysis (P ≤ .001). Within both the clinical good and poor responder subgroups, increased in vitro resistance to PRD was associated with a worse outcome, which was significant within the group of clinical good responders (P &lt; .001). LC50 values, ie, lethal concentrations to 50% of ALL cells, for PRD and each other drug correlated significantly with those of all other 12 drugs, with an average correlation coefficient of 0.44 (standard deviation 0.05). The highest correlations were found between structurally related drugs. In conclusion, in vitro resistance to PRD was significantly related to the short-term and long-term clinical response to chemotherapy, the latter also within the subgroup of clinical good responders to PRD. There was a more general in vitro cross-resistance between anticancer drugs in childhood ALL, although drug-specific activities were recognized.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


Blood ◽  
1978 ◽  
Vol 52 (4) ◽  
pp. 712-718 ◽  
Author(s):  
SD Smith ◽  
EM Uyeki ◽  
JT Lowman

Abstract An assay system in vitro for the growth of malignant lymphoblastic colony-forming cells (CFC) was established. Growth of malignant myeloblastic CFC has been previously reported, but this is the first report of growth of malignant lymphoblastic CFC. Established assay systems in vitro have been very helpful in elucidating the control of growth and differentiation of both normal and malignant bone marrow cells. Lymphoblastic CFC were grown from the bone marrow aspirates of 20 children with acute lymphoblastic leukemia. Growth of these colonies was established on an agar assay system and maintained in the relative hypoxia (7% oxygen) of a Stulberg chamber. The criteria for malignancy of these colonies was based upon cellular cytochemical staining characteristics, the presence of specific cell surface markers, and the ability of these lymphoid cells to grow without the addition of a lymphoid mitogen. With this technique, specific nutritional requirements and drug sensitivities can be established in vitro, and these data may permit tailoring of individual antileukemic therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


1983 ◽  
Vol 210 (1) ◽  
pp. 259-263 ◽  
Author(s):  
J Hubbard ◽  
M Kalimi

Citrate greatly stabilized rat hepatic unbound glucocorticoid receptors in cell-free conditions at 4 degrees C with optimal effectiveness at 5-15 mM. Control receptors were inactivated at 4 degrees C with a half-life of less than 12 h. However, in the presence of 10 mM-citrate, unbound receptors were almost completely stabilized for 48 h at 4 degrees C. Citrate at a concentration of 1-2 mM yielded half-maximal stabilization. The stabilizing effect of citrate was rather specific, as succinate, alpha-oxoglutarate, oxaloacetate, malate and pyruvate had no apparent stabilizing action. Citrate stabilized receptors over a wide range of H+ concentrations, with complete protection between pH 6.5 and 8.5. In addition, citrate appeared to have a significant effect on glucocorticoid-receptor complex activation into a nuclear binding form. Thus 5-10 mM-citrate enhanced nuclear binding, with optimal activation achieved at 10 mM concentration. As analysed by sucrose-density-gradient centrifugation and DEAE-cellulose chromatography, no apparent change was observed in the physical characteristics of the glucocorticoid receptor in the presence of citrate.


Sign in / Sign up

Export Citation Format

Share Document