scholarly journals Sialyl SSEA-1 antigen as a carbohydrate marker of human natural killer cells and immature lymphoid cells

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 255-261
Author(s):  
K Ohmori ◽  
T Yoneda ◽  
G Ishihara ◽  
K Shigeta ◽  
K Hirashima ◽  
...  

The distribution of a carbohydrate antigen, the sialyl SSEA-1 (sialyl Lex-i), in human lymphoid cells was investigated by flow cytometry with a specific monoclonal antibody, MoAb FH-6. We concluded that the lymphocytes positive for the sialyl SSEA-1 antigen present in normal peripheral blood (PB) are natural killer (NK) cells since the positive cells had an NK activity toward K562 cells, and most of the sialyl SSEA- 1+ cells were simultaneously positive for Leu-11 (CD-16) and Leu-19. Essentially, no T and B cells, defined by Leu-4 (CD3) and Leu-16 (CD20), were positive for the sialyl SSEA-1 antigen in PB samples taken from healthy donors and patients with disorders unrelated to lymphoid malignancies. Among the malignant lymphoid cells, many sialylated SSEA- 1+ cells were observed in large granular lymphocyte (LGL) leukemia cells and some acute lymphoblastic leukemia (ALL) blasts, but not in CLL cells or malignant lymphoma cells. Sialyl SSEA-1 was also positive in some cultured human lymphoid cell lines. We conclude that expression of the sialyl SSEA-1 antigen is strictly limited to a distinct population of NK cells among the mature lymphocytes in normal PB, but the antigen is present in a wide range of immature lymphoblasts of T- and B-cell lineages as well as the NK-cell lineage. The sialyl SSEA-1 antigen disappears from the surface of immature lymphocytes of T- and B- cell lineages during the course of maturation.

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 255-261 ◽  
Author(s):  
K Ohmori ◽  
T Yoneda ◽  
G Ishihara ◽  
K Shigeta ◽  
K Hirashima ◽  
...  

Abstract The distribution of a carbohydrate antigen, the sialyl SSEA-1 (sialyl Lex-i), in human lymphoid cells was investigated by flow cytometry with a specific monoclonal antibody, MoAb FH-6. We concluded that the lymphocytes positive for the sialyl SSEA-1 antigen present in normal peripheral blood (PB) are natural killer (NK) cells since the positive cells had an NK activity toward K562 cells, and most of the sialyl SSEA- 1+ cells were simultaneously positive for Leu-11 (CD-16) and Leu-19. Essentially, no T and B cells, defined by Leu-4 (CD3) and Leu-16 (CD20), were positive for the sialyl SSEA-1 antigen in PB samples taken from healthy donors and patients with disorders unrelated to lymphoid malignancies. Among the malignant lymphoid cells, many sialylated SSEA- 1+ cells were observed in large granular lymphocyte (LGL) leukemia cells and some acute lymphoblastic leukemia (ALL) blasts, but not in CLL cells or malignant lymphoma cells. Sialyl SSEA-1 was also positive in some cultured human lymphoid cell lines. We conclude that expression of the sialyl SSEA-1 antigen is strictly limited to a distinct population of NK cells among the mature lymphocytes in normal PB, but the antigen is present in a wide range of immature lymphoblasts of T- and B-cell lineages as well as the NK-cell lineage. The sialyl SSEA-1 antigen disappears from the surface of immature lymphocytes of T- and B- cell lineages during the course of maturation.


2014 ◽  
Vol 211 (3) ◽  
pp. 563-577 ◽  
Author(s):  
Cécile Daussy ◽  
Fabrice Faure ◽  
Katia Mayol ◽  
Sébastien Viel ◽  
Georg Gasteiger ◽  
...  

Trail+DX5−Eomes− natural killer (NK) cells arise in the mouse fetal liver and persist in the adult liver. Their relationships with Trail−DX5+ NK cells remain controversial. We generated a novel Eomes-GFP reporter murine model to address this question. We found that Eomes− NK cells are not precursors of classical Eomes+ NK cells but rather constitute a distinct lineage of innate lymphoid cells. Eomes− NK cells are strictly dependent on both T-bet and IL-15, similarly to NKT cells. We observed that, in the liver, expression of T-bet in progenitors represses Eomes expression and the development of Eomes+ NK cells. Reciprocally, the bone marrow (BM) microenvironment restricts T-bet expression in developing NK cells. Ectopic expression of T-bet forces the development of Eomes− NK cells, demonstrating that repression of T-bet is essential for the development of Eomes+ NK cells. Gene profile analyses show that Eomes− NK cells share part of their transcriptional program with NKT cells, including genes involved in liver homing and NK cell receptors. Moreover, Eomes− NK cells produce a broad range of cytokines, including IL-2 and TNF in vitro and in vivo, during immune responses against vaccinia virus. Thus, mutually exclusive expression of T-bet and Eomes drives the development of different NK cell lineages with complementary functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 156-164
Author(s):  
V Pistoia ◽  
S Zupo ◽  
A Corcione ◽  
S Roncella ◽  
L Matera ◽  
...  

Highly purified natural killer (NK) cell suspensions were tested for their capacity to release colony-stimulating activity (CSA) in vitro. NK cell suspensions comprised primarily CD16+ cells and were devoid of CD3+ T cells, CD15+ monocytes, and of B cells. CSA was detected in the NK cell supernatants and sustained the growth of myeloid colonies from both normal peripheral blood and bone marrow. CSA could be in part inhibited by pretreating NK cell culture supernatants with a specific goat anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antiserum. The inhibition, however, was never complete, a finding that suggests that additional factors were responsible for CSA. Incubation of NK cells with K562 cells (an NK-sensitive target) or with normal bone marrow cells resulted in the appearance of a strong colony- inhibiting activity (CIA) in the culture supernatants. Such CIA was demonstrable in an experimental system where bone marrow or peripheral blood progenitors were induced to form myeloid colonies in the presence of conditioned medium by CSA-producing giant cell tumor (GCT) cells. Stimulation of NK cells with NK-insensitive targets failed to induce CIA production. Neutralizing antitumor necrosis factor (TNF) monoclonal antibodies (MoAbs) were found capable of inhibiting CIA present in the supernatants of NK cells stimulated with K562 cells. Following treatment with anti-TNF antibodies, CSA was again detectable in the same supernatants. This finding indicates that induction of TNF production did not concomitantly switch off CSA production by NK cells. Pretreatment of NK cells with recombinant interleukin-2 (rIL-2) or gamma interferon (r gamma IFN) did not change the amount of CSA released. However, treatment with rIL-2 caused the appearance of a factor in the NK cell supernatants capable of sustaining the formation of colonies of a larger size.


2018 ◽  
Vol 315 (6) ◽  
pp. L977-L990 ◽  
Author(s):  
Matthew T. Rätsep ◽  
Stephen D. Moore ◽  
Salema Jafri ◽  
Melissa Mitchell ◽  
Hugh J. M. Brady ◽  
...  

Natural killer (NK) cells are cytotoxic innate lymphoid cells with an established role in the regulation of vascular structure in pregnancy and cancer. Impaired NK cell function has been identified in patients with pulmonary arterial hypertension (PAH), a disease of obstructive vascular remodeling in the lungs, as well as in multiple rodent models of disease. However, the precise contribution of NK cell impairment to the initiation and progression of PAH remains unknown. Here, we report the development of spontaneous pulmonary hypertension in two independent genetic models of NK cell dysfunction, including Nfil3−/− mice, which are deficient in NK cells due to the absence of the NFIL3 transcription factor, and Ncr1-Gfp mice, which lack the NK activating receptor NKp46. Mouse models of NK insufficiency exhibited increased right ventricular systolic pressure and muscularization of the pulmonary arteries in the absence of elevated left ventricular end-diastolic pressure, indicating that the development of pulmonary hypertension was not secondary to left heart dysfunction. In cases of severe NK cell impairment or loss, a subset of mice failed to develop pulmonary hypertension and instead exhibited reduced systemic blood pressure, demonstrating an extension of vascular abnormalities beyond the pulmonary circulation into the systemic vasculature. In both mouse models, the development of PAH was linked to elevated interleukin-23 production, whereas systemic hypotension in Ncr1-Gfp mice was accompanied by a loss of angiopoietin-2. Together, these results support an important role for NK cells in the regulation of pulmonary and systemic vascular function and the pathogenesis of PAH.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuqing Cao ◽  
Xiaoyu Wang ◽  
Tianqiang Jin ◽  
Yu Tian ◽  
Chaoliu Dai ◽  
...  

Abstract Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK’s potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5480-5480
Author(s):  
Isabel Gonzalez-Gascon y Marin ◽  
Ana María Pérez-Corral ◽  
Jorge Gayoso ◽  
Javier Anguita ◽  
Ana Carolina Franco ◽  
...  

Abstract Background The main functions of Natural Killer (NK) cells are early protection against viruses or tumour cells and production of cytokines that regulate immune functions. NK cells are the first lymphoid cells to repopulate the marrow after Stem Cell Transplantation (SCT) and reach normal levels within 1 month after transplant. Acquisition of both, inhibiting and activating receptors on developing NK cells is an important step in their functional maturation. Previous studies showed the beneficial effect of NK alloreactivity in prevention of relapse, especially in the setting of haploidentical SCT. The aim of this study is to compare the reconstitution of the NK cell compartment during the first 3 months after unmanipulated haploidentical peripheral blood SCT (Haplo) and HLA-identical sibling peripheral blood SCT (HLA-id). Patients and Methods 11 adult patients received SCT (7 Haplo and 4 HLA-id) at Gregorio Marañón Hospital (Madrid-Spain) from November 2012 to April 2013. Conditioning regimen comprised fludarabine, cyclophosphamide and busulfan for Haplo SCT and fludarabine and busulfan or fludaribine and melphalan for HLA-id SCT. Prophylaxis for acute graft-versus-host disease consisted of high dose cyclophosphamide on days +3 and +4, cyclosporine A and mycophenolate mofetil for Haplo and Cyclosporine A and methotrexate for HLA-id. Patient´s characteristics and transplant outcomes are shown in table 1. We analysed reconstitution patterns and phenotype of NK at day +15, +30, +60, and +90 after transplantation by multi-color flow cytometry on FC500 Beckman Coulter® cytometer using the following anti-human monoclonal antibodies: CD3 FITC, CD56 ECD, CD45 PC7, NKG2A PC7, NKp30 PC5, NKp44 PE, Nkp46 PC5, and NKG2D PE (Beckman Coulter®). For comparison between the two groups Mann–Whitney U-test was used. Results 2/7 patients who received Haplo SCT died early in the post-transplantation period (day +50 and +66), and were excluded of the analysis because NK cells were not recovered by those days. NK cells reached normal levels by day +30: median 71 cells/µl (21-1089)) after Haplo; median 213.5 cells/µl (113-499) after HLA-id, and remained at high levels through follow up, with no significant differences between the two groups. Similarly to previous studies, a large percentage of NKbright cells was observed at day +30 after Haplo (median 89% of NK cells (55-97%)), a percentage that tended to decrease at day +60 (30% (7-38%)) and +90 (35% (10-45%)). Interestingly the percentage of NKbright cells after HLA-id SCT at day +30 (median 14.5% of NK cells (6-30%)) compared with Haplo, was significantly lower (p=0.016). This was accompanied by a significantly lower expression of inhibitory receptor NKG2A after HLA-id SCT than after Haplo: 59.5% (50-62%) versus 92.5% (50-62%) at day +30; 54% (38-61%) versus 86% (70-88%) versus at day +60 (p=0.016). Activating receptors NKp44 and NKp30 showed a low expression after both types of SCT throughout the first 3 months after transplantation. By contrast, activating receptor NKp46 levels were significantly higher at day +30 after Haplo than after HLA-id SCT (93% (87-98%) versus 50% (37-51%)) (p=0.016). Finally, high and similar proportions of activating receptor NKG2D were observed in both types of SCT. Figure 1 illustrates the recovery of the NK cell receptor phenotype for each type of SCT. Conclusions Our data showed an early and fast recovery of NK cells after Haplo and HLA-id SCT. However, phenotypic maturation of NK cells appears to be different for each type of transplant. NK cells generated after Haplo exhibit a more immature phenotype, characterized by a higher proportion of NKbright cells, and a higher expression of NKG2A at day +30. Interestingly expression of NKp46 was significantly higher after Haplo than after HLA-id SCT. Other authors have reported cytotoxic activity of these NK cells with high expression of NKp46, suggesting that cytotoxicity may be preserved in these immature NK cells. NKp30, NKG2D and NKp44 expression is less affected by the type of SCT. Acknowledgments This work has been partially supported by Project “Evaluación de la reconstitución inmune después del trasplante haploidéntico de progenitores hemopoyéticos sin depleción T” from Fundación Mutua Madrileña. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Eugene Park ◽  
Swapneel J. Patel ◽  
Qiuling Wang ◽  
Prabhakar S. Andhey ◽  
Konstantin Zaitsev ◽  
...  

AbstractInnate lymphoid cells (ILCs) were originally classified based on their cytokine profiles, placing natural killer (NK) cells and ILC1s together, but recent studies support their separation into different lineages at steady-state. However, tumors may induce NK cell conversion into ILC1-like cells that are limited to the tumor microenvironment and whether this conversion occurs beyond this environment remains unknown. Here we describeToxoplasma gondiiinfection converts NK cells into cells resembling steady-state ILC1s that are heterogeneous and distinct from both steady-state NK cells and ILC1s in uninfected mice. Most toxoplasma-induced ILC1s were Eomes-dependent, indicating that NK cells can give rise to Eomes−Tbet-dependent ILC1-like cells that circulate widely and persist independent of ongoing infection. Moreover, these changes appear permanent, as supported by epigenetic analyses. Thus, these studies markedly expand current concepts of NK cells, ILCs, and their potential conversion.


1995 ◽  
Vol 181 (3) ◽  
pp. 1101-1110 ◽  
Author(s):  
M Kumagai ◽  
E Coustan-Smith ◽  
D J Murray ◽  
O Silvennoinen ◽  
K G Murti ◽  
...  

CD38 is a transmembrane glycoprotein expressed in many cell types, including lymphoid progenitors and activated lymphocytes. High levels of CD38 expression on immature lymphoid cells suggest its role in the regulation of cell growth and differentiation, but there is no evidence demonstrating a functional activity of CD38 on these cells. We used stroma-supported cultures of B cell progenitors and anti-CD38 monoclonal antibodies (T16 and IB4) to study CD38 function. In cultures of normal bone marrow CD19+ cells (n = 5), addition of anti-CD38 markedly reduced the number of cells recovered after 7 d. Cell loss was greatest among CD19+ sIg- B cell progenitors (mean cell recovery +/- SD = 7.2 +/- 11.7% of recovery in control cultures) and extended to CD19+CD34+ B cells (the most immature subset; 7.6 +/- 2.2%). In contrast, CD38 ligation did not substantially affect cell numbers in cultures of normal peripheral blood or tonsillar B cells. In stroma-supported cultures of 22 B-lineage acute lymphoblastic leukemia cases, anti-CD38 suppressed recovery of CD19+ sIg- leukemic cells. CD38 ligation also suppressed the growth of immature lymphoid cell lines cultured on stroma and, in some cases, in the presence of stroma-derived cytokines (interleukin [IL] 7, IL-3, and/or stem cell factor), but did not inhibit growth in stroma- or cytokine-free cultures. DNA content and DNA fragmentation studies showed that CD38 ligation of stroma-supported cells resulted in both inhibition of DNA synthesis and induction of apoptosis. It is known that CD38 catalyzes nicotinamide adenine dinucleotide (NAD+) hydrolysis into cyclic ADP-ribose (cADPR) and ADPR. However, no changes in NAD+ hydrolysis or cADPR and ADPR production after CD38 ligation were found by high-performance liquid chromatography; addition of NAD+, ADPR, or cADPR to cultures of lymphoid progenitors did not offset the inhibitory effects of anti-CD38. Thus, anti-CD38 does not suppress B lymphopoiesis by altering the enzymatic function of the molecule. In conclusion, these data show that CD38 ligation inhibits the growth of immature B lymphoid cells in the bone marrow microenvironment, and suggest that CD38 interaction with a putative ligand represents a novel regulatory mechanism of B lymphopoiesis.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Kristina S. Burrack ◽  
Geoffrey T. Hart ◽  
Sara E. Hamilton

Abstract Natural killer (NK) cells are important innate effector cells that are well described in their ability to kill virally-infected cells and tumors. However, there is increasing appreciation for the role of NK cells in the control of other pathogens, including intracellular parasites such as Plasmodium, the cause of malaria. NK cells may be beneficial during the early phase of Plasmodium infection—prior to the activation and expansion of antigen-specific T cells—through cooperation with myeloid cells to produce inflammatory cytokines like IFNγ. Recent work has defined how Plasmodium can activate NK cells to respond with natural cytotoxicity, and inhibit the growth of parasites via antibody-dependent cellular cytotoxicity mechanisms (ADCC). A specialized subset of adaptive NK cells that are negative for the Fc receptor γ chain have enhanced ADCC function and correlate with protection from malaria. Additionally, production of the regulatory cytokine IL-10 by NK cells prevents overt pathology and death during experimental cerebral malaria. Now that conditional NK cell mouse models have been developed, previous studies need to be reevaluated in the context of what is now known about other immune populations with similarity to NK cells (i.e., NKT cells and type I innate lymphoid cells). This brief review summarizes recent findings which support the potentially beneficial roles of NK cells during Plasmodium infection in mice and humans. Also highlighted are how the actions of NK cells can be explored using new experimental strategies, and the potential to harness NK cell function in vaccination regimens.


Sign in / Sign up

Export Citation Format

Share Document