scholarly journals C-kit gene is expressed by skin mast cells in embryos but not in puppies of Wsh/Wsh mice: age-dependent abolishment of c-kit gene expression

Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3509-3516 ◽  
Author(s):  
M Yamazaki ◽  
T Tsujimura ◽  
E Morii ◽  
K Isozaki ◽  
H Onoue ◽  
...  

Abstract The Wsh is a mutant allele at the W (c-kit) locus of mice, but no significant abnormalities are found at the coding region of the Wsh allele. Since cultured mast cells derived from the spleen of Wsh/Wsh mice do not express messenger RNA (mRNA) of c-kit, we studied the interrelation between the number of mast cells and the magnitude of c- kit mRNA expression in the skin of Wsh/Wsh mice of various ages. The number of mast cells in the skin of Wsh/Wsh embryos of 18 days postcoitum (pc) was approximately 40% that of normal control (+/+) embryos, but the number of mast cells decreased exponentially after birth; the number dropped to 0.6% that of +/+ mice at day 150 after birth. A weak but apparent signal of c-kit mRNA was detectable in the skin of 18-day pc Wsh/Wsh embryos by RNase protection assay but not in the skin of 5-day-old Wsh/Wsh mice. The number of c-kit protein- containing cells was significantly greater in the skin of 18-day pc Wsh/Wsh embryos than in the skin of 5-day-old Wsh/Wsh mice. The abolishment of c-kit mRNA expression appeared to be specific, because the expression of mast cell carboxypeptidase A mRNA but not of c-kit mRNA was detectable by in situ hybridization in skin mast cells of 5- day-old Wsh/Wsh mice. Taken together, the expression of c-kit mRNA was abolished first, then the content of c-kit protein dropped to undetectable levels, and then the disappearance of Wsh/Wsh mast cells themselves followed.

Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3509-3516 ◽  
Author(s):  
M Yamazaki ◽  
T Tsujimura ◽  
E Morii ◽  
K Isozaki ◽  
H Onoue ◽  
...  

The Wsh is a mutant allele at the W (c-kit) locus of mice, but no significant abnormalities are found at the coding region of the Wsh allele. Since cultured mast cells derived from the spleen of Wsh/Wsh mice do not express messenger RNA (mRNA) of c-kit, we studied the interrelation between the number of mast cells and the magnitude of c- kit mRNA expression in the skin of Wsh/Wsh mice of various ages. The number of mast cells in the skin of Wsh/Wsh embryos of 18 days postcoitum (pc) was approximately 40% that of normal control (+/+) embryos, but the number of mast cells decreased exponentially after birth; the number dropped to 0.6% that of +/+ mice at day 150 after birth. A weak but apparent signal of c-kit mRNA was detectable in the skin of 18-day pc Wsh/Wsh embryos by RNase protection assay but not in the skin of 5-day-old Wsh/Wsh mice. The number of c-kit protein- containing cells was significantly greater in the skin of 18-day pc Wsh/Wsh embryos than in the skin of 5-day-old Wsh/Wsh mice. The abolishment of c-kit mRNA expression appeared to be specific, because the expression of mast cell carboxypeptidase A mRNA but not of c-kit mRNA was detectable by in situ hybridization in skin mast cells of 5- day-old Wsh/Wsh mice. Taken together, the expression of c-kit mRNA was abolished first, then the content of c-kit protein dropped to undetectable levels, and then the disappearance of Wsh/Wsh mast cells themselves followed.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1448-1453 ◽  
Author(s):  
T Tono ◽  
T Tsujimura ◽  
U Koshimizu ◽  
T Kasugai ◽  
S Adachi ◽  
...  

Abstract The Wsh is a mutant allele at the W (c-kit) locus of mice. Mice of Wsh/Wsh genotype have white hairs and black eyes. Although adult C57BL/6-Wsh/Wsh mice were not anemic, they showed a remarkable depletion of mast cells. Most homozygous or double heterozygous mutant mice at the W (c-kit) locus, of which mast-cell depletion was comparable to that of Wsh/Wsh mice, are deficient in germ cells. However, male and female Wsh/Wsh mice have an appreciable number of germ cells in their gonads. We investigated the mechanism of specific depletion of mast cells in Wsh/Wsh mice. Cultured mast cells (CMC) derived from the spleen of Wsh/Wsh mice neither attached to normal (+/+) fibroblasts nor survived in the coculture with +/+ fibroblasts. The c-kit messenger RNA (mRNA) was strongly expressed in +/+ CMC, but not detectable in Wsh/Wsh CMC. Despite the lack of c-kit mRNA in Wsh/Wsh CMC, the c-kit mRNA was normally detectable in the cerebellum and weakly detectable in the testis and spleen of Wsh/Wsh mice. No significant changes were found in the nucleotide sequence of the c-kit transcripts obtained from the cerebellum of Wsh/Wsh mice. Development of mast cells, erythrocytes, and germ cells in Wsh/Wsh mice appeared to be parallel with the magnitude of the c-kit gene expression in each cell type.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1448-1453
Author(s):  
T Tono ◽  
T Tsujimura ◽  
U Koshimizu ◽  
T Kasugai ◽  
S Adachi ◽  
...  

The Wsh is a mutant allele at the W (c-kit) locus of mice. Mice of Wsh/Wsh genotype have white hairs and black eyes. Although adult C57BL/6-Wsh/Wsh mice were not anemic, they showed a remarkable depletion of mast cells. Most homozygous or double heterozygous mutant mice at the W (c-kit) locus, of which mast-cell depletion was comparable to that of Wsh/Wsh mice, are deficient in germ cells. However, male and female Wsh/Wsh mice have an appreciable number of germ cells in their gonads. We investigated the mechanism of specific depletion of mast cells in Wsh/Wsh mice. Cultured mast cells (CMC) derived from the spleen of Wsh/Wsh mice neither attached to normal (+/+) fibroblasts nor survived in the coculture with +/+ fibroblasts. The c-kit messenger RNA (mRNA) was strongly expressed in +/+ CMC, but not detectable in Wsh/Wsh CMC. Despite the lack of c-kit mRNA in Wsh/Wsh CMC, the c-kit mRNA was normally detectable in the cerebellum and weakly detectable in the testis and spleen of Wsh/Wsh mice. No significant changes were found in the nucleotide sequence of the c-kit transcripts obtained from the cerebellum of Wsh/Wsh mice. Development of mast cells, erythrocytes, and germ cells in Wsh/Wsh mice appeared to be parallel with the magnitude of the c-kit gene expression in each cell type.


Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1239-1249 ◽  
Author(s):  
C.A. Whittaker ◽  
D.W. DeSimone

Adhesion of cells to extracellular matrix proteins is mediated, in large part, by transmembrane receptors of the integrin family. The identification of specific integrins expressed in early embryos is an important first step to understanding the roles of these receptors in developmental processes. We have used polymerase chain reaction methods and degenerate oligodeoxynucleotide primers to identify and clone Xenopus integrin alpha subunits from neurula-stage (stage 17) cDNA. Partial cDNAs encoding integrin subunits alpha 2, alpha 3, alpha 4, alpha 5, alpha 6 and an alpha IIb-related subunit were cloned and used to investigate integrin mRNA expression in early embryos by RNase protection assay and whole-mount in situ hybridization methods. Considerable integrin diversity is apparent early in development with integrins alpha 2, alpha 3, alpha 4, alpha 5 and alpha 6 each expressed by the end of gastrulation. Both alpha 3 and alpha 5 are expressed as maternal mRNAs. Zygotic expression of alpha 2, alpha 3, alpha 4 and alpha 6 transcripts begins during gastrulation. Integrin alpha 5 is expressed at relatively high levels during cleavage, blastula and gastrula stages suggesting that it may represent the major integrin expressed in the early embryo. We demonstrated previously that integrin beta 1 protein synthesis remains constant following induction of stage 8 animal cap cells with activin (Smith, J. C., Symes, K., Hynes, R. O. and DeSimone, D. W. (1990) Development 108, 289–298.). Here we report that integrin alpha 3, alpha 4 and alpha 6 mRNA levels increase following induction with 10 U/ml activin-A whereas alpha 5, beta 1 and beta 3 mRNA levels remain unchanged. Whole-mount in situ hybridization reveals that alpha 3 mRNAs are expressed by cells of the involuting mesoderm in the dorsal lip region of early gastrulae. As gastrulation proceeds, alpha 3 expression is localized to a stripe of presumptive notochordal cells along the dorsal midline. In neurulae, alpha 3 mRNA is highly expressed in the notochord but becomes progressively more restricted to the caudalmost portion of this tissue as development proceeds from tailbud to tadpole stages. In addition, alpha 3 is expressed in the forebrain region of later stage embryos. These data suggest that integrin-mediated adhesion may be involved in the process of mesoderm involution at gastrulation and the organization of tissues during embryogenesis.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 359-371 ◽  
Author(s):  
Mihoko Kinoshita ◽  
Daniela Rodler ◽  
Kenichi Sugiura ◽  
Kayoko Matsushima ◽  
Norio Kansaku ◽  
...  

The avian perivitelline layer (PL), a vestment homologous to the zona pellucida (ZP) of mammalian oocytes, is composed of at least three glycoproteins. Our previous studies have demonstrated that the matrix's components, ZP3 and ZPD, are synthesized in ovarian granulosa cells. Another component, ZP1, is synthesized in the liver and is transported to the ovary by blood circulation. In this study, we report the isolation of cDNA encoding quail ZP2 and its expression in the female bird. By RNase protection assay and in situ hybridization, we demonstrate that ZP2 transcripts are restricted to the oocytes of small white follicles (SWF). The expression level of ZP2 decreased dramatically during follicular development, and the highest expression was observed in the SWF. Western blot and immunohistochemical analyses using the specific antibody against ZP2 indicate that the 80 kDa protein is the authentic ZP2, and the immunoreactive ZP2 protein is also present in the oocytes. Moreover, ultrastructural analysis demonstrated that the immunoreactive ZP2 localizes to the zona radiata, the perivitelline space, and the oocyte cytoplasm in the SWF. By means of western blot analysis and immunofluorescence microscopy, we detected a possible interaction of the recombinant ZP2 with ZP3 and that this interaction might lead to the formation of amorphous structure on the cell surface. These results demonstrate for the first time that the avian ZP gene is expressed in the oocyte, and that the ZP2 protein in the oocyte might play a role for the PL formation in the immature follicles of the ovary.


1995 ◽  
Vol 43 (2) ◽  
pp. 203-209 ◽  
Author(s):  
S M de la Monte ◽  
T Quertermous ◽  
C C Hong ◽  
K D Bloch

Endothelin 2 (ET2), also referred to as vasoactive intestinal contractor peptide, is a member of a family of vasoactive peptides. ET2 is a potent constrictor of intestinal smooth muscle, and the mRNA that encodes it has been detected in murine intestinal extracts. To further investigate the potential physiological roles of ET2, we characterized the cellular distribution of ET2 gene expression in adult rat gastrointestinal tract. Using an RNAse protection assay, an overall proximal to distal gradient of increasing ET2 gene expression was observed from stomach to colon. In situ hybridization studies confirmed this finding and demonstrated ET2 mRNA localized in lamina propria stromal cells. Moreover, ET2 gene expression in stromal cells increased from crypt to villous tip. The results demonstrate that ET2 is produced by stromal cells in villi throughout the intestine. Increased ET2 gene expression at the villous tip is associated with more mature overlying epithelial cells, suggesting a possible role for this vasoactive peptide in intestinal epithelial differentiation or secretory activity.


Genetics ◽  
1994 ◽  
Vol 138 (2) ◽  
pp. 353-363
Author(s):  
P D Currie ◽  
D T Sullivan

Abstract We report here the isolation and characterization of genes from Drosophila that encode the glycolytic enzyme phosphoglyceromutase (PGLYM). Two genomic regions have been isolated that have potential to encode PGLYM. Their cytogenetic localizations have been determined by in situ hybridization to salivary gland chromosomes. One gene, Pglym78, is found at 78A/B and the other, Pglym87, at 87B4,5 of the Drosophila polytene map. Pglym78 transcription follows a developmental pattern similar to other glycolytic genes in Drosophila, i.e., substantial maternal transcript deposited during oogenesis; a decline in abundance in the first half of embryogenesis; a subsequent increase in the second half of embryogenesis which continues throughout larval life; a decline in pupae and a second increase to a plateau in adults. This transcript has been mapped by cDNA and genomic sequence comparison, RNase protection, and primer extension. Using similar analyses transcripts of Pglym87 could not be detected. Pglym78 has two introns which interrupt the coding region, while the Pglym87 gene lacks introns. This and other features support a model of retrotransposition mediated gene duplication for the origin of Pglym87. The apparent absence of a complete, intact coding frame and transcript suggest that Pglym87 is a pseudogene. However, retention of reading frame and codon bias suggests that Pglym87 may retain coding function, or may have been inactivated recently, substantially after the time of duplication, or that the molecular evolution of Pglym87 is unusual. Similarities of the unusual molecular evolution of Pglym87 and other proposed pseudogenes are discussed.


2000 ◽  
Vol 278 (2) ◽  
pp. R513-R519 ◽  
Author(s):  
Karl-Heinz Hofbauer ◽  
Boye L. Jensen ◽  
Armin Kurtz ◽  
Peter Sandner

Our study aimed to investigate the influence of tissue hypoxygenation on the adrenomedullin (ADM) system in vivo. For this purpose, male Sprague-Dawley rats were exposed to normobaric hypoxia (8% oxygen) or to functional anemia [0.1% carbon monoxide (CO)] or to cobalt chloride (60 mg/kg) for 6 h. Messenger RNA levels for ADM and its receptor (ADM-R) were assessed in diverse organs by RNase protection assay. Additionally, ADM protein concentrations in these organs, as in plasma, were determined by a RIA. We found that ADM mRNA abundance increased in response to hypoxia and to CO inhalation up to 15-fold in all organs examined. Similarly, ADM-R mRNA abundance increased during hypoxia and CO inhalation in all organs examined with exception of the liver. The effects of hypoxia and of CO inhalation on ADM and ADM-R mRNAs were mimicked by injection of cobaltous chloride. Hypoxia also significantly increased ADM protein content in all organs, and plasma levels of ADM rose twofold in response to hypoxia and CO inhalation. These findings indicate that tissue hypoxia leads to a widespread activation of the ADM system, which comprises a parallel stimulation of ADM and ADM receptor mRNA as enhanced ADM protein synthesis and secretion. The ADM system may, therefore, play a significant role in the physiological response to tissue hypoxia. It appears that ADM and ADM-R belong to the family of classic oxygen-regulated genes, which are activated by a decrease of the pericellular oxygen tension through the same intracellular signaling cascade.


Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 575-583 ◽  
Author(s):  
S. Nomura ◽  
B.L. Hogan ◽  
A.J. Wills ◽  
J.K. Heath ◽  
D.R. Edwards

Single-stranded antisense RNA probes have been used to study the expression of the metalloproteinase inhibitor TIMP (tissue inhibitor of metalloproteinases), during mouse embryogenesis and in adult tissues. Using a sensitive RNase protection assay, low levels of transcript can be detected in a variety of tissues, including maternal deciduum, embryonic kidney, lung and amnion. Higher levels are seen in osteogenic tissues such as calvaria, while the highest level in any tissue is found in the ovary, though even here expression is an order of magnitude below that observed in growth factor-treated fibroblasts in vitro. Using the technique of in situ hybridization, TIMP transcripts can first be detected in osteogenic tissues in the head and limb at about 15.5 days post coitum, and increase in amount until birth. The high levels of TIMP RNA in the ovary are localized to cells of the corpora lutea.


Sign in / Sign up

Export Citation Format

Share Document