scholarly journals Structure, expression and duplication of genes which encode phosphoglyceromutase of Drosophila melanogaster.

Genetics ◽  
1994 ◽  
Vol 138 (2) ◽  
pp. 353-363
Author(s):  
P D Currie ◽  
D T Sullivan

Abstract We report here the isolation and characterization of genes from Drosophila that encode the glycolytic enzyme phosphoglyceromutase (PGLYM). Two genomic regions have been isolated that have potential to encode PGLYM. Their cytogenetic localizations have been determined by in situ hybridization to salivary gland chromosomes. One gene, Pglym78, is found at 78A/B and the other, Pglym87, at 87B4,5 of the Drosophila polytene map. Pglym78 transcription follows a developmental pattern similar to other glycolytic genes in Drosophila, i.e., substantial maternal transcript deposited during oogenesis; a decline in abundance in the first half of embryogenesis; a subsequent increase in the second half of embryogenesis which continues throughout larval life; a decline in pupae and a second increase to a plateau in adults. This transcript has been mapped by cDNA and genomic sequence comparison, RNase protection, and primer extension. Using similar analyses transcripts of Pglym87 could not be detected. Pglym78 has two introns which interrupt the coding region, while the Pglym87 gene lacks introns. This and other features support a model of retrotransposition mediated gene duplication for the origin of Pglym87. The apparent absence of a complete, intact coding frame and transcript suggest that Pglym87 is a pseudogene. However, retention of reading frame and codon bias suggests that Pglym87 may retain coding function, or may have been inactivated recently, substantially after the time of duplication, or that the molecular evolution of Pglym87 is unusual. Similarities of the unusual molecular evolution of Pglym87 and other proposed pseudogenes are discussed.

Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3509-3516 ◽  
Author(s):  
M Yamazaki ◽  
T Tsujimura ◽  
E Morii ◽  
K Isozaki ◽  
H Onoue ◽  
...  

Abstract The Wsh is a mutant allele at the W (c-kit) locus of mice, but no significant abnormalities are found at the coding region of the Wsh allele. Since cultured mast cells derived from the spleen of Wsh/Wsh mice do not express messenger RNA (mRNA) of c-kit, we studied the interrelation between the number of mast cells and the magnitude of c- kit mRNA expression in the skin of Wsh/Wsh mice of various ages. The number of mast cells in the skin of Wsh/Wsh embryos of 18 days postcoitum (pc) was approximately 40% that of normal control (+/+) embryos, but the number of mast cells decreased exponentially after birth; the number dropped to 0.6% that of +/+ mice at day 150 after birth. A weak but apparent signal of c-kit mRNA was detectable in the skin of 18-day pc Wsh/Wsh embryos by RNase protection assay but not in the skin of 5-day-old Wsh/Wsh mice. The number of c-kit protein- containing cells was significantly greater in the skin of 18-day pc Wsh/Wsh embryos than in the skin of 5-day-old Wsh/Wsh mice. The abolishment of c-kit mRNA expression appeared to be specific, because the expression of mast cell carboxypeptidase A mRNA but not of c-kit mRNA was detectable by in situ hybridization in skin mast cells of 5- day-old Wsh/Wsh mice. Taken together, the expression of c-kit mRNA was abolished first, then the content of c-kit protein dropped to undetectable levels, and then the disappearance of Wsh/Wsh mast cells themselves followed.


2005 ◽  
Vol 79 (13) ◽  
pp. 8560-8571 ◽  
Author(s):  
Marie-Christine Dazza ◽  
Michel Ekwalanga ◽  
Monique Nende ◽  
Karhemere Bin Shamamba ◽  
Pitchou Bitshi ◽  
...  

ABSTRACT We report the identification of a new simian immunodeficiency virus (SIV), designated SIVden, in a naturally infected Dent's Mona monkey (Cercopithecus mona denti), which was kept as pet in Kinshasa, capital of the Democratic Republic of Congo. SIVden is genetically distinct from the previously characterized primate lentiviruses. Analysis of the full-length genomic sequence revealed the presence of a vpu open reading frame. This gene is also found in the virus lineage of human immunodeficiency virus type 1 (HIV-1) and chimpanzee immunodeficiency virus (SIVcpz) and was recently described in viruses isolated from Cercopithecus nictitans, Cercopithecus mona, and Cercopithecus cephus. The SIVden vpu coding region is shorter than the HIV-1/SIVcpz and the SIVgsn, SIVmon, and SIVmus counterparts. Unlike Pan troglodytes schweinfurthii viruses (SIVcpzPts) and Cercopithecus monkey viruses (SIVgsn, SIVmon, and SIVmus), the SIVden Vpu contains the characteristic DSGXES motif which was shown to be involved in Vpu-mediated CD4 and IκBα proteolysis in HIV-1 infected cells. Although it harbors a vpu gene, SIVden is phylogenetically closer to SIVdeb isolated from De Brazza's monkeys (Cercopithecus neglectus), which lacks a vpu gene, than to Cercopithecus monkey viruses, which harbor a vpu sequence.


2008 ◽  
Vol 74 (11) ◽  
pp. 3426-3433 ◽  
Author(s):  
Munir A. Anwar ◽  
Slavko Kralj ◽  
Marc J. E. C. van der Maarel ◽  
Lubbert Dijkhuizen

ABSTRACT Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with β(2-6) and β(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, 13C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by 13C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55°C, with a drastic decrease at 60°C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3509-3516 ◽  
Author(s):  
M Yamazaki ◽  
T Tsujimura ◽  
E Morii ◽  
K Isozaki ◽  
H Onoue ◽  
...  

The Wsh is a mutant allele at the W (c-kit) locus of mice, but no significant abnormalities are found at the coding region of the Wsh allele. Since cultured mast cells derived from the spleen of Wsh/Wsh mice do not express messenger RNA (mRNA) of c-kit, we studied the interrelation between the number of mast cells and the magnitude of c- kit mRNA expression in the skin of Wsh/Wsh mice of various ages. The number of mast cells in the skin of Wsh/Wsh embryos of 18 days postcoitum (pc) was approximately 40% that of normal control (+/+) embryos, but the number of mast cells decreased exponentially after birth; the number dropped to 0.6% that of +/+ mice at day 150 after birth. A weak but apparent signal of c-kit mRNA was detectable in the skin of 18-day pc Wsh/Wsh embryos by RNase protection assay but not in the skin of 5-day-old Wsh/Wsh mice. The number of c-kit protein- containing cells was significantly greater in the skin of 18-day pc Wsh/Wsh embryos than in the skin of 5-day-old Wsh/Wsh mice. The abolishment of c-kit mRNA expression appeared to be specific, because the expression of mast cell carboxypeptidase A mRNA but not of c-kit mRNA was detectable by in situ hybridization in skin mast cells of 5- day-old Wsh/Wsh mice. Taken together, the expression of c-kit mRNA was abolished first, then the content of c-kit protein dropped to undetectable levels, and then the disappearance of Wsh/Wsh mast cells themselves followed.


Genome ◽  
2009 ◽  
Vol 52 (7) ◽  
pp. 658-664 ◽  
Author(s):  
Jie Xu ◽  
Michele Frick ◽  
André Laroche ◽  
Zhong-Fu Ni ◽  
Bao-Yun Li ◽  
...  

Complete genomic and cDNA sequences of the Waxy gene encoding granule-bound starch synthase I (GBSSI) were isolated from the rye genome and characterized. The full-length rye Waxy genomic DNA and cDNA are 2767 bp and 1815 bp, respectively. The genomic sequence has 11 exons interrupted by 10 introns. The rye Waxy gene is GC-rich, with a higher GC frequency in the coding region, especially in the third position of the codons. Exon regions of the rye Waxy gene are more conserved than intron regions when compared with the homologous sequences of other cereals. The mature rye GBSSI proteins share more than 95% sequence identity with their homologs in wheat and barley. A phylogenetic tree based on sequence comparisons of available plant GBSSI proteins shows the evolutionary relationship among Waxy genes from rye and other plant genomes. The identification of the rye Waxy gene will enable the manipulation of starch metabolism in rye and triticale.


2006 ◽  
Vol 394 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Dylan Sweetman ◽  
Sue Johnson ◽  
Samuel E. K. Caddick ◽  
David E. Hanke ◽  
Charles A. Brearley

The metabolic pathway(s) by which plants synthesize InsP6 (inositol 1,2,3,4,5,6-hexakisphosphate) remains largely undefined [Shears (1998) Biochim. Biophys. Acta 1436, 49–67], while the identities of the genes that encode enzymes catalysing individual steps in these pathways are, with the notable exception of myo-inositol phosphate synthase and ZmIpk [Shi, Wang, Wu, Hazebroek, Meeley and Ertl (2003) Plant Physiol. 131, 507–515], unidentified. A yeast enzyme, ScIPK1, catalyses the synthesis of InsP6 by 2-phosphorylation of Ins(1,3,4,5,6)P5 (inositol 1,3,4,5,6-pentakisphosphate). A human orthologue, HsIPK1, is able to substitute for yeast ScIPK1, restoring InsP6 production in a Saccharomyces cerevisiae mutant strain lacking the ScIPK1 open reading frame (ScIpk1Δ). We have identified an Arabidopsis genomic sequence, AtIPK1, encoding an Ins(1,3,4,5,6)P5 2-kinase. Inclusion of the AtIPK1 protein in alignments of amino acid sequences reveals that human and Arabidopis kinases are more similar to each other than to the S. cerevisiae enzyme, and further identifies an additional motif. Recombinant AtIPK1 protein expressed in Escherichia coli catalysed the synthesis of InsP6 from Ins(1,3,4,5,6)P5. The enzyme obeyed Michaelis–Menten kinetics with an apparent Vmax of 35 nmol·min−1·(mg of protein)−1 and a Km for Ins(1,3,4,5,6)P5 of 22 μM at 0.4 mM ATP. RT (reverse transcriptase)–PCR analysis of AtIPK1 transcripts revealed that AtIPK1 is expressed in siliques, leaves and cauline leaves. In situ hybridization experiments further revealed strong expression of AtIPK1 in male and female organs of flower buds. Expression of AtIPK1 protein in an ScIpk1Δ mutant strain restored InsP6 production and rescued the temperature-sensitive growth phenotype of the yeast.


2004 ◽  
Vol 24 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Zhonghai Chen ◽  
Xiaofen Sun ◽  
Kexuan Tang

A new lectin gene was isolated by using genomic walker technology and revealed to encode a mannose-binding lectin. Analysis of a 2233 bp segment revealed a gene including a 1169 bp 5′ flanking region, a 417 bp open reading frame (ORF) and a 649 bp 3′ flanking region. There are two putative TATA boxes and eight possible CAAT boxes lie in the 5′ flanking region. The ORF encodes a 15.1 kDa precursor, which contains a 24-amino acid signal peptide. One possible polyadenylation signal is found in the 3′-flanking region. No intron was detected within the region of genomic sequence corresponding to zaa (Zantedeschia aethiopica agglutinin) full-length cDNA, which is typical of other mannose-binding lectin gene that have been reported. The deduced amino acid sequence of the lectin gene coding region shares 49–54% homology with other known lectins. The cloning of this new lectin gene will allow us to further study its structure, expression and regulation mechanisms.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
T Watanabe ◽  
D R Kankel

Abstract Previous genetic studies have shown that wild-type function of the l(1)ogre (lethal (1) optic ganglion reduced) locus is essential for the generation and/or maintenance of the postembryonic neuroblasts including those from which the optic lobe is descended. In the present study molecular isolation and characterization of the l(1)ogre locus was carried out to study the structure and expression of this gene in order to gain information about the nature of l(1)ogre function and its relevance to the development of the central nervous system. About 70 kilobases (kb) of genomic DNA were isolated that spanned the region where l(1)ogre was known to reside. Southern analysis of a l(1)ogre mutation and subsequent P element-mediated DNA transformation mapped the l(1)ogre+ function within a genomic fragment of 12.5 kb. Northern analyses showed that a 2.9-kb message transcribed from this 12.5-kb region represented l(1)ogre. A 2.15-kb portion of a corresponding cDNA clone was sequenced. An open reading frame (ORF) of 1,086 base paris was found, and a protein sequence of 362 amino acids with one highly hydrophobic segment was deduced from conceptual translation of this ORF.


Parasitology ◽  
2015 ◽  
Vol 142 (14) ◽  
pp. 1663-1672 ◽  
Author(s):  
SHIWANTHI L. RANASINGHE ◽  
KATJA FISCHER ◽  
GEOFFREY N. GOBERT ◽  
DONALD P. MCMANUS

SUMMARYLittle is known about the molecular mechanisms whereby the human blood flukeSchistosoma japonicumis able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of theS. japonicumgenomic sequence identified a gene,SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form inEscherichia coliand purified.SjKI-1is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula.In situimmunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5µm, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca++. We present, therefore, characterization of the first Kunitz protein fromS. japonicumwhich we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders.


1993 ◽  
Vol 13 (8) ◽  
pp. 5034-5042
Author(s):  
C L Wellington ◽  
M E Greenberg ◽  
J G Belasco

The protein-coding region of the c-fos proto-oncogene transcript contains elements that direct the rapid deadenylation and decay of this mRNA in mammalian cells. The function of these coding region instability determinants requires movement of ribosomes across mRNAs containing them. Three types of mechanisms could account for this translational requirement. Two of these possibilities, (i) that rapid mRNA decay might be mediated by the nascent polypeptide chain and (ii) that it might result from an unusual codon usage, have experimental precedent. Here, we present evidence that the destabilizing elements in the c-fos coding region are not recognized in either of these two ways. Instead, the ability of the c-fos coding region to function as a potent mRNA destabilizer when translated in the +1 reading frame indicates that the signals for rapid deadenylation and decay reside in the sequence or structure of the RNA comprising this c-fos domain.


Sign in / Sign up

Export Citation Format

Share Document