scholarly journals Differential effects of ifosfamide on the capacity of cytotoxic T lymphocytes and natural killer cells to lyse their target cells correlate with intracellular glutathione levels

Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2124-2131 ◽  
Author(s):  
G Multhoff ◽  
T Meier ◽  
C Botzler ◽  
M Wiesnet ◽  
A Allenbacher ◽  
...  

We established an in vitro model to study the influence of ifosfamide treatment on intracellular glutathione (GSH) levels in activated human effector cells with specific phenotypes and immunologic functions. Besides its role as the major intracellular reductant, GSH has been shown to affect the initiation and progression of lymphocyte activation after stimulation with lectins. An incubation of activated human peripheral blood lymphocytes (PBL) with 4-hydroxyifosfamide, the activated form of ifosfamide (4-OH-IF), resulted in a depletion of the intracellular GSH levels and a significant inhibition of the proliferative capacity in a dose-dependent manner. The cytotoxic activity of separated CD3-natural killer (NK) cells and CD3+ allospecific, cytotoxic T lymphocytes (CTL), either untreated or treated with 4-OH-IF at different concentrations, was compared in a standard 51chromium release assay (CML). There were three major findings. (1) The capacity of CD3+ major histocompatibility complex (MHC)-restricted CTL to lyse their specific allogeneic target cells was substantially reduced by preincubation of the effector cells with 4-OH-IF. This inhibition of the lytic activity in CD3+ CTL correlated with a substantial depletion of the intracellular GSH levels in this population. Rapid reconstitution of depleted GSH levels and restoration of cytotoxic activity of CTL was achieved by incubation of the effector cells with thiols, eg, glutathione ester (GSH-ester) or 2-mercaptoethanesulfonate (mesna). (2) In contrast, the lytic activity in CD3-NK cells was not substantially affected (up to 100 mumol/L 4-OH-IF). This result correlates with the capacity of NK cells to maintain their intracellular GSH levels after an ifosfamide treatment. (3) In comparison with CD3+ CTL, CD3-NK cells are more resistant to an ifosfamide treatment because they have higher initial GSH levels and a more than fourfold higher relative rate of GSH synthesis.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1420
Author(s):  
Jagoda Siemaszko ◽  
Aleksandra Marzec-Przyszlak ◽  
Katarzyna Bogunia-Kubik

Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings.


1999 ◽  
Vol 54 (2) ◽  
pp. 113-121 ◽  
Author(s):  
M.-A. Sol ◽  
N. Vacaresse ◽  
J. Lule ◽  
C. Davrinche ◽  
B. Gabriel ◽  
...  

2014 ◽  
Vol 89 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Shayarana L. Gooneratne ◽  
Jonathan Richard ◽  
Wen Shi Lee ◽  
Andrés Finzi ◽  
Stephen J. Kent ◽  
...  

ABSTRACTMany attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus bothin vitroandin vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+NK cell subset from HLA-Bw4+individuals exhibits an activation advantage over the KIR3DL1−subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines.IMPORTANCENK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


Physiology ◽  
1988 ◽  
Vol 3 (5) ◽  
pp. 211-216
Author(s):  
JD-E Young ◽  
ZA Cohn

Subsets of lymphocytes, known as cytotoxic T lymphocytes or natural killer cells, are potent killers of target cells. These immune cells have large granules in their cytoplasm containing cytotoxic peptides and other factors. Several of these molecules have been isolated and their functions elucidated.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2093-2102 ◽  
Author(s):  
Ombretta Salvucci ◽  
Jean Pierre Kolb ◽  
Bernard Dugas ◽  
Nathalie Dugas ◽  
Salem Chouaib

Abstract We have investigated the interleukin-12 (IL-12) and tumor necrosis factor- (TNF)-induced regulation of human natural killer (NK) cell function and their relationship with nitric oxide (NO) generation. We demonstrate that both cytokines were efficient to trigger the transcription of the inducible nitric oxide synthase (iNOS) mRNA, as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Western blot analysis and intracytoplasmic fluorescence showed that iNOS protein was also induced by both cytokines. However, our data indicate that NO does not play a significant role in the effector phase of the cytotoxic activity mediated by NK-stimulated cells, inasmuch as the lytic activity was not affected in the presence of specific NO synthase inhibitors. When aminoguanidine (AMG), an inhibitor of iNOS, was added during the afferent phase of NK stimulation with IL-12 and TNF, a subsequent increase in the lytic potential of the effector cells towards the NK-sensitive target cells (K562) and lymphokine-activated killer (LAK) target cells (Daudi) was observed. Conversely, the addition of chemical NO donors during the afferent step resulted in a dose-dependent inhibition of the NK and LAK cytotoxicity. Our data suggest that the enhancement of NK-cell cytotoxic activity resulting from iNOS inhibition may be correlated, at least in part, to an increase in interferon-γ production and granzyme B expression. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2093-2102 ◽  
Author(s):  
Ombretta Salvucci ◽  
Jean Pierre Kolb ◽  
Bernard Dugas ◽  
Nathalie Dugas ◽  
Salem Chouaib

We have investigated the interleukin-12 (IL-12) and tumor necrosis factor- (TNF)-induced regulation of human natural killer (NK) cell function and their relationship with nitric oxide (NO) generation. We demonstrate that both cytokines were efficient to trigger the transcription of the inducible nitric oxide synthase (iNOS) mRNA, as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Western blot analysis and intracytoplasmic fluorescence showed that iNOS protein was also induced by both cytokines. However, our data indicate that NO does not play a significant role in the effector phase of the cytotoxic activity mediated by NK-stimulated cells, inasmuch as the lytic activity was not affected in the presence of specific NO synthase inhibitors. When aminoguanidine (AMG), an inhibitor of iNOS, was added during the afferent phase of NK stimulation with IL-12 and TNF, a subsequent increase in the lytic potential of the effector cells towards the NK-sensitive target cells (K562) and lymphokine-activated killer (LAK) target cells (Daudi) was observed. Conversely, the addition of chemical NO donors during the afferent step resulted in a dose-dependent inhibition of the NK and LAK cytotoxicity. Our data suggest that the enhancement of NK-cell cytotoxic activity resulting from iNOS inhibition may be correlated, at least in part, to an increase in interferon-γ production and granzyme B expression. © 1998 by The American Society of Hematology.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3183-3190 ◽  
Author(s):  
Kathy S. Wang ◽  
David A. Frank ◽  
Jerome Ritz

Interleukin (IL)-12 plays a critical role in modulating the activities of natural killer (NK) cells and T lymphocytes. In animal models, IL-12 has potent antitumor effects that are likely mediated by its ability to enhance the cytotoxic activity of NK cells and cytotoxic T lymphocytes, and to induce the production of interferon (IFN)-γ by NK and T cells. In addition to IL-12, NK cells are responsive to IL-2, and may mediate some of the antitumor effects of IL-2. In this study, we examine the interaction between IL-2 and the signaling events induced by IL-12 in NK cells. We find that IL-2 not only up-regulates the expression of IL-12Rβ1 and IL-12Rβ2, it also plays an important role in up-regulating and maintaining the expression of STAT4, a critical STAT protein involved in IL-12 signaling in NK cells. In contrast to the effects of IL-2 alone, expression of IL-12 receptors and STAT4 are unaffected or decreased by IL-12 or the combination of IL-2 and IL-12. Through expression of high levels of IL-12 receptors and STAT4, IL-2–primed NK cells show enhanced functional responses to IL-12 as measured by IFN-γ production and the killing of target cells. NK cells from cancer patients who received low-dose IL-2 treatment also exhibited increased expression of IL-12 receptor chains, suggesting that IL-2 may enhance the response to IL-12 in vivo. These findings provide a molecular framework to understand the interaction between IL-2 and IL-12 in NK cells, and suggest strategies for improving the effectiveness of these cytokines in the immunotherapy of cancer.


Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1419-1426 ◽  
Author(s):  
Xinguo Jiang ◽  
Brent A. Orr ◽  
David M. Kranz ◽  
David J. Shapiro

Exposure to estrogens is associated with an increased risk of developing breast, cervical, and liver cancer. Estrogens strongly induce the human granzyme B inhibitor, proteinase inhibitor 9 (PI-9). Because cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells use the granzyme pathway to induce apoptosis of target cells, we tested the ability of activated CTLs and the human NK cell line, YT cells, to lyse human liver cells. Estrogen induction of PI-9 protected the liver cells against CTL and NK cell-mediated, granzyme-dependent, apoptosis. Knockdown of PI-9 by RNA interference blocked the protective effect of estrogen. This work demonstrates that estrogens can act on target cells to control their destruction by immune system cells and shows that induction of PI-9 expression can inhibit both CTL and NK cell-mediated apoptosis. Estrogen induction of PI-9 may reduce the ability of cytolytic lymphocytes-mediated immune surveillance to destroy newly transformed cells, possibly providing a novel mechanism for an estrogen-mediated increase in tumor incidence.


Sign in / Sign up

Export Citation Format

Share Document