Antigen-Induced Eosinophilic Lung Inflammation Develops in Mice Deficient in Chemokine Eotaxin

Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3912-3923 ◽  
Author(s):  
Yi Yang ◽  
James Loy ◽  
Rolf-Peter Ryseck ◽  
Daniel Carrasco ◽  
Rodrigo Bravo

The mechanisms that regulate the selective infiltration of eosinophils in certain allergic diseases are still poorly understood. The CC chemokine eotaxin is a potent chemoattractant, highly specific for eosinophils. Recent studies have implicated that eotaxin plays an important role in the recruitment of eosinophils in different inflammation processes. A number of other chemokines, cytokines, and chemoattractants also have chemotactic activities for eosinophils and some of them present high selectivity for eosinophils. To further study the role of eotaxin in inflammation, we generated mutant mice with the eotaxin gene disrupted and replaced by the Escherichia coliβ-galactosidase gene. These mice developed normally and had no histologic or hematopoietic abnormalities. Furthermore, our studies showed that the lack of eotaxin did not affect the recruitment of eosinophils in the inflammation models induced by Sephadex beads and thioglycollate, as well as in an experimental lung eosinophilia model induced by ovalbumin aerosol challenge, even at the onset of the inflammatory response. The replacement of the eotaxin gene by the β-galactosidase gene provided a useful marker to monitor the activity of the eotaxin promoter under normal conditions and after antigen challenges. Immunohistochemical staining suggested that endothelial cells were the major sources of eotaxin expression.

Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3912-3923 ◽  
Author(s):  
Yi Yang ◽  
James Loy ◽  
Rolf-Peter Ryseck ◽  
Daniel Carrasco ◽  
Rodrigo Bravo

Abstract The mechanisms that regulate the selective infiltration of eosinophils in certain allergic diseases are still poorly understood. The CC chemokine eotaxin is a potent chemoattractant, highly specific for eosinophils. Recent studies have implicated that eotaxin plays an important role in the recruitment of eosinophils in different inflammation processes. A number of other chemokines, cytokines, and chemoattractants also have chemotactic activities for eosinophils and some of them present high selectivity for eosinophils. To further study the role of eotaxin in inflammation, we generated mutant mice with the eotaxin gene disrupted and replaced by the Escherichia coliβ-galactosidase gene. These mice developed normally and had no histologic or hematopoietic abnormalities. Furthermore, our studies showed that the lack of eotaxin did not affect the recruitment of eosinophils in the inflammation models induced by Sephadex beads and thioglycollate, as well as in an experimental lung eosinophilia model induced by ovalbumin aerosol challenge, even at the onset of the inflammatory response. The replacement of the eotaxin gene by the β-galactosidase gene provided a useful marker to monitor the activity of the eotaxin promoter under normal conditions and after antigen challenges. Immunohistochemical staining suggested that endothelial cells were the major sources of eotaxin expression.


Pneumologie ◽  
2013 ◽  
Vol 67 (S 01) ◽  
Author(s):  
X Lai ◽  
C Schulz ◽  
F Seifert ◽  
B Dolniak ◽  
O Wolkenhauer ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xianfeng Yan ◽  
Bin Xie ◽  
Guihai Wu ◽  
Jing Hu ◽  
Di Wang ◽  
...  

Interleukin-37 (IL-37) is unique in the IL-1 family since it broadly suppresses innate immunity and elevates in humans with inflammatory and autoimmune diseases. IL-37 shows definite groups and transcripts for human IL37 gene, but it is still not completely understood the effect and mechanisms of inflammatory response in endothelial cells. It is well accepted that endothelial dysfunction caused by inflammation is a key initiating event in atherosclerotic plaque formation, which leads to the occurrence and development of the cardiovascular adverse events in clinical since the inflammatory responses of endothelial cells could induce and enhance the deposition of extensive lipid and the formation of atherosclerotic plaque in the intima. Thus, it is essential to investigate the role and potential mechanisms in endothelial inflammatory response to prevent the formation and development of many cardiovascular diseases including atherosclerosis. So far, the recent studies have revealed that IL-37 is able to inhibit inflammatory response by suppressing the TLR2-NF-κB-ICAM-1 pathway intracellularly in human coronary artery endothelial cells (HCAECs). Further, the role of IL-37 may be related to the IL-18 pathway extracellularly and involved in the adhesion and transmigration of neutrophils in HCAECs.


2002 ◽  
Vol 283 (4) ◽  
pp. H1282-H1291 ◽  
Author(s):  
A. W. Mulivor ◽  
H. H. Lipowsky

The binding of fluorescently labeled microspheres (FLMs, 0.1-μm diameter) coated with antibody (1a29) to ICAM-1 was studied in postcapillary venules during topical application of the chemoattractant N-formylmethionyl-leucyl-phenylalanine (fMLP). FLM adhesion to endothelial cells (ECs) increased dramatically from 50 to 150 spheres per 100-μm length of venule after superfusion of the mesentery with fMLP and equaled or exceeded levels of leukocyte (WBC) adhesion. Removal of the EC glycocalyx by micropipette infusion of the venule with heparinase increased FLM-EC adhesion to levels attained with fMLP. Subsequent application of fMLP did not increase FLM adhesion further, suggesting that the FLMs saturated all ICAM-1 binding sites. Perfusion with heparinase after suffusion with fMLP significantly increased FLM-EC adhesion above levels attained with fMLP. However, WBC adhesion fell because of possible removal of selectins necessary to maintain WBC rolling at the wall. It is concluded that the glycocalyx serves as a barrier to adhesion and that its shedding during natural activation of ECs may be an essential part of the inflammatory response.


2021 ◽  
Author(s):  
Upkardeep Singh Pandher ◽  
Shelley Kirychuk ◽  
David Schneberger ◽  
Brooke Thompson ◽  
Gurpreet Aulakh ◽  
...  

Abstract Background: Glyphosate is an active ingredient in herbicides used in agriculture worldwide. Exposure to glyphosate has been associated with respiratory dysfunctions in agricultural workers. However, the ability of glyphosate to induce inflammation in the lung is not well studied. Therefore, we evaluated lung inflammatory response to glyphosate at agricultural relevant dose for single and repetitive exposures. Methods: Male C57BL/6 mice were intranasally exposed to glyphosate (1 μg/40 μl) for 1-day or once daily for 5-days, and 10-days. After the exposure periods, mice were euthanized to collect the bronchoalveolar lavage (BAL) fluid and lung tissue. Results: Repetitive exposure to glyphosate for 5-days and 10-days showed an increase of neutrophils in BAL fluid and eosinophil peroxidase levels in lungs, a marker for eosinophils. Leukocyte infiltration in lungs was further confirmed through lung histology. Th2 cytokines including IL-5 and IL-13 were increased in BAL fluid after 10-days of glyphosate exposure whereas IL-4 was not increased. Lung sections from all glyphosate groups showed higher expression for ICAM-1, VCAM-1, and vWF adhesion molecules. TLR-4 and TLR-2 expression was increased in lungs after repetitive exposure to glyphosate. Conclusions: We conclude that repetitive exposure to glyphosate induces migration of neutrophils and eosinophils and release of Th2 cytokines. This study, for the first time, provides evidence for the role of ICAM-1, VCAM-1 and vWF in lungs of glyphosate-treated animals.


2019 ◽  
Vol 20 (14) ◽  
pp. 3494 ◽  
Author(s):  
Fanny Vardon-Bounes ◽  
Stéphanie Ruiz ◽  
Marie-Pierre Gratacap ◽  
Cédric Garcia ◽  
Bernard Payrastre ◽  
...  

Host defense against infection is based on two crucial mechanisms: the inflammatory response and the activation of coagulation. Platelets are involved in both hemostasis and immune response. These mechanisms work together in a complex and synchronous manner making the contribution of platelets of major importance in sepsis. This is a summary of the pathophysiology of sepsis-induced thrombocytopenia, microvascular consequences, platelet-endothelial cells and platelet–pathogens interactions. The critical role of platelets during sepsis and the therapeutic implications are also reviewed.


2004 ◽  
Vol 11 (2) ◽  
pp. 358-361 ◽  
Author(s):  
Gustavo Matute-Bello ◽  
Robert K. Winn ◽  
Thomas R. Martin ◽  
W. Conrad Liles

ABSTRACT To determine whether the Fas/Fas ligand (FasL) (CD95/CD178) system contributes to the development of an inflammatory response in vivo, 2.5 μg of bacterial lipopolysaccharide (LPS; endotoxin) per g was administered intranasally to healthy mice (C57BL/6) and mutant mice deficient in either Fas (lpr mice) or FasL (gld mice). Sustained LPS-induced neutrophilic inflammation in the lungs was attenuated in both lpr and gld mice. These observations provide further evidence of a proinflammatory role for the Fas/FasL system in the lungs.


Sign in / Sign up

Export Citation Format

Share Document