Alteration of Actin Organization by Jaspamide Inhibits Ruffling, but not Phagocytosis or Oxidative Burst, in HL-60 Cells and Human Monocytes

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3994-4005 ◽  
Author(s):  
Ina Fabian ◽  
Drora Halperin ◽  
Smadar Lefter ◽  
Leonid Mittelman ◽  
Rom T. Altstock ◽  
...  

Abstract Jaspamide, a naturally occurring cyclic peptide isolated from the marine sponge Hemiastrella minor, has fungicidal and growth-inhibiting activities. Exposure of promyelocytic HL-60 cells and human monocytes to jaspamide induces a dramatic reorganization of actin from a typical fibrous network to focal aggregates. HL-60 cells exposed to 5 × 10−8 mol/L or 10−7 mol/L jaspamide exhibited a reduced proliferation rate. In addition, 10−7mol/L jaspamide induced maturation of HL-60 cells as indicated by the appearance of a lobulated nucleus in 55% ± 5% of the cells and immunophenotypic maturation of the leukemia cells (upregulation of CD16 and CD14 B antigens). Further characterization has shown that F-actin is aggregated both in HL-60 cells and in human monocytes exposed to 10−7 mol/L jaspamide. Well-spread cultured human monocytes contracted and adopted round shapes after treatment with jaspamide. Moreover, a dose-dependent increase in both total actin and de novo synthesized portions of the soluble actin was observed in jaspamide-treated HL-60 cells. Jaspamide treatment inhibits ruffling and intracellular movement in HL-60 cells and monocytes, but does not affect phagocytic activity or respiratory burst activity. The consequential effects of jaspamide-induced actin reorganization on ruffling, versus its negligible effect on phagocytosis and oxidative burst, may shed light on molecular mechanisms of actin involvement in these processes. Jaspamide disrupts the actin cytoskeleton of normal and malignant mammalian cells with no significant effect on phagocytic activity and may, therefore, be considered as a novel therapeutic agent.

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3994-4005
Author(s):  
Ina Fabian ◽  
Drora Halperin ◽  
Smadar Lefter ◽  
Leonid Mittelman ◽  
Rom T. Altstock ◽  
...  

Jaspamide, a naturally occurring cyclic peptide isolated from the marine sponge Hemiastrella minor, has fungicidal and growth-inhibiting activities. Exposure of promyelocytic HL-60 cells and human monocytes to jaspamide induces a dramatic reorganization of actin from a typical fibrous network to focal aggregates. HL-60 cells exposed to 5 × 10−8 mol/L or 10−7 mol/L jaspamide exhibited a reduced proliferation rate. In addition, 10−7mol/L jaspamide induced maturation of HL-60 cells as indicated by the appearance of a lobulated nucleus in 55% ± 5% of the cells and immunophenotypic maturation of the leukemia cells (upregulation of CD16 and CD14 B antigens). Further characterization has shown that F-actin is aggregated both in HL-60 cells and in human monocytes exposed to 10−7 mol/L jaspamide. Well-spread cultured human monocytes contracted and adopted round shapes after treatment with jaspamide. Moreover, a dose-dependent increase in both total actin and de novo synthesized portions of the soluble actin was observed in jaspamide-treated HL-60 cells. Jaspamide treatment inhibits ruffling and intracellular movement in HL-60 cells and monocytes, but does not affect phagocytic activity or respiratory burst activity. The consequential effects of jaspamide-induced actin reorganization on ruffling, versus its negligible effect on phagocytosis and oxidative burst, may shed light on molecular mechanisms of actin involvement in these processes. Jaspamide disrupts the actin cytoskeleton of normal and malignant mammalian cells with no significant effect on phagocytic activity and may, therefore, be considered as a novel therapeutic agent.


Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2019 ◽  
Vol 19 (25) ◽  
pp. 2271-2282 ◽  
Author(s):  
Bo Lu ◽  
Xue-Hui Liu ◽  
Si-Ming Liao ◽  
Zhi-Long Lu ◽  
Dong Chen ◽  
...  

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


2021 ◽  
pp. 104063872110255
Author(s):  
Kelly du Preez ◽  
Yolandi Rautenbach ◽  
Emma H. Hooijberg ◽  
Amelia Goddard

Canine parvoviral enteritis (CPE) is a severe disease characterized by systemic inflammation and immunosuppression. The function of circulating phagocytes (neutrophils and monocytes) in affected dogs has not been fully investigated. We characterized the functional capacity of canine phagocytes in CPE by determining their oxidative burst and phagocytic activities using flow cytometry. Blood was collected from 28 dogs with CPE and 11 healthy, age-matched, control dogs. Oxidative burst activity was assessed by stimulating phagocytes with opsonized Escherichia coli or phorbol 12-myristate 13-acetate (PMA) and measuring the percentage of phagocytes producing reactive oxygen species and the magnitude of this production. Phagocytosis was measured by incubating phagocytes with opsonized E. coli and measuring the percentage of phagocytes containing E. coli and the number of bacteria per cell. Complete blood counts and serum C-reactive protein (CRP) concentrations were also determined. Serum CRP concentration was negatively and positively correlated with segmented and band neutrophil concentrations, respectively. Overall, no differences in phagocyte function were found between dogs with CPE and healthy control dogs. However, infected dogs with neutropenia or circulating band neutrophils had decreased PMA-stimulated oxidative burst activity compared to healthy controls. Additionally, CPE dogs with neutropenia or circulating band neutrophils had decreased PMA- and E. coli–stimulated oxidative burst activity and decreased phagocytosis of E. coli compared to CPE dogs without neutropenia or band neutrophils. We conclude that phagocytes have decreased oxidative burst and phagocytic activity in neutropenic CPE dogs and in CPE dogs with circulating band neutrophils.


2021 ◽  
Vol 22 (15) ◽  
pp. 8338
Author(s):  
Asad Jan ◽  
Nádia Pereira Gonçalves ◽  
Christian Bjerggaard Vaegter ◽  
Poul Henning Jensen ◽  
Nelson Ferreira

The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 576
Author(s):  
Yanru Fan ◽  
Wanfeng Li ◽  
Zhexin Li ◽  
Shaofei Dang ◽  
Suying Han ◽  
...  

The study of somatic embryogenesis can provide insight into early plant development. We previously obtained LaMIR166a-overexpressing embryonic cell lines of Larix kaempferi (Lamb.) Carr. To further elucidate the molecular mechanisms associated with miR166 in this species, the transcriptional profiles of wild-type (WT) and three LaMIR166a-overexpressing transgenic cell lines were subjected to RNA sequencing using the Illumina NovaSeq 6000 system. In total, 203,256 unigenes were generated using Trinity de novo assembly, and 2467 differentially expressed genes were obtained by comparing transgenic and WT lines. In addition, we analyzed the cleaved degree of LaMIR166a target genes LaHDZ31–34 in different transgenic cell lines by detecting the expression pattern of LaHdZ31–34, and their cleaved degree in transgenic cell lines was higher than that in WT. The downstream genes of LaHDZ31–34 were identified using Pearson correlation coefficients. Yeast one-hybrid and dual-luciferase report assays revealed that the transcription factors LaHDZ31–34 could bind to the promoters of LaPAP, LaPP1, LaZFP5, and LaPHO1. This is the first report of gene expression changes caused by LaMIR166a overexpression in Japanese larch. These findings lay a foundation for future studies on the regulatory mechanism of miR166.


Sign in / Sign up

Export Citation Format

Share Document