Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2163-2171 ◽  
Author(s):  
Abdelilah Soussi Gounni ◽  
Bernard Gregory ◽  
Esra Nutku ◽  
Fadi Aris ◽  
Koussih Latifa ◽  
...  

Interleukin-9 (IL-9) has been implicated in the pathogenesis of allergic disorders. To examine the interaction between IL-9 and eosinophils, we evaluated mature peripheral blood eosinophils for their expression of the specific α-subunit of the IL-9 receptor (IL-9R–α). The expression of IL-9R–α by human eosinophils was detected at the messenger RNA (mRNA) and protein levels by reverse transcriptase–polymerase chain reaction (RT-PCR), flow cytometry, and immunocytochemical analysis, respectively. Functional analyses demonstrated that recombinant human (rh)IL-9 inhibited in vitro peripheral blood human eosinophil apoptosis in a concentration-dependent manner. We then examined the role of IL-9 in eosinophil differentiation using the human cord blood CD34+cells and human promyelocytic leukemia cells (HL-60). The addition of IL-9 to CD34+ cells cultured in IL-3 and IL-5 enhanced eosinophil development, and IL-9 alone induced the expression of IL-5R–α. IL-9 also up-regulated the IL-5R–α chain cell surface expression during terminal eosinophil differentiation of the HL-60 cell line. Our findings suggest that IL-9 may potentiate in vivo eosinophil function by increasing their survival and IL-5–mediated differentiation and maturation. Taken together, these results suggest a mechanism by which IL-9 potentiates airway and tissue eosinophilia.

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2163-2171 ◽  
Author(s):  
Abdelilah Soussi Gounni ◽  
Bernard Gregory ◽  
Esra Nutku ◽  
Fadi Aris ◽  
Koussih Latifa ◽  
...  

Abstract Interleukin-9 (IL-9) has been implicated in the pathogenesis of allergic disorders. To examine the interaction between IL-9 and eosinophils, we evaluated mature peripheral blood eosinophils for their expression of the specific α-subunit of the IL-9 receptor (IL-9R–α). The expression of IL-9R–α by human eosinophils was detected at the messenger RNA (mRNA) and protein levels by reverse transcriptase–polymerase chain reaction (RT-PCR), flow cytometry, and immunocytochemical analysis, respectively. Functional analyses demonstrated that recombinant human (rh)IL-9 inhibited in vitro peripheral blood human eosinophil apoptosis in a concentration-dependent manner. We then examined the role of IL-9 in eosinophil differentiation using the human cord blood CD34+cells and human promyelocytic leukemia cells (HL-60). The addition of IL-9 to CD34+ cells cultured in IL-3 and IL-5 enhanced eosinophil development, and IL-9 alone induced the expression of IL-5R–α. IL-9 also up-regulated the IL-5R–α chain cell surface expression during terminal eosinophil differentiation of the HL-60 cell line. Our findings suggest that IL-9 may potentiate in vivo eosinophil function by increasing their survival and IL-5–mediated differentiation and maturation. Taken together, these results suggest a mechanism by which IL-9 potentiates airway and tissue eosinophilia.


Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 1938-1947 ◽  
Author(s):  
Lamia Achour ◽  
Mark G. H. Scott ◽  
Hamasseh Shirvani ◽  
Alain Thuret ◽  
Georges Bismuth ◽  
...  

The association of CD4, a glycoprotein involved in T-cell development and antigen recognition, and CC chemokine receptor 5 (CCR5), a chemotactic G protein–coupled receptor, which regulates trafficking and effector functions of immune cells, forms the main receptor for HIV. We observed that the majority of CCR5 is maintained within the intracellular compartments of primary T lymphocytes and in a monocytic cell line, contrasting with its relatively low density at the cell surface. The CCR5-CD4 association, which occurs in the endoplasmic reticulum, enhanced CCR5 export to the plasma membrane in a concentration-dependent manner, whereas inhibition of endogenous CD4 with small interfering RNAs decreased cell-surface expression of endogenous CCR5. This effect was specific for CCR5, as CD4 did not affect cellular distribution of CXCR4, the other HIV coreceptor. These results reveal a previously unappreciated role of CD4, which contributes to regulating CCR5 export to the plasma membrane.


2020 ◽  
Vol 22 (1) ◽  
pp. 262
Author(s):  
Nobuyuki Onai ◽  
Chie Ogasawara

Calcium pyrophosphate dihydrate (CPPD) crystals are formed locally within the joints, leading to pseudogout. Although the mobilization of local granulocytes can be observed in joints where pseudogout has manifested, the mechanism of this activity remains poorly understood. In this study, CPPD crystals were administered to mice, and the dynamics of splenic and peripheral blood myeloid cells were analyzed. As a result, levels of both granulocytes and monocytes were found to increase following CPPD crystal administration in a concentration-dependent manner, with a concomitant decrease in lymphocytes in the peripheral blood. In contrast, the levels of other cells, such as dendritic cell subsets, T-cells, and B-cells, remained unchanged in the spleen, following CPPD crystal administration. Furthermore, an increase in granulocytes/monocyte progenitors (GMPs) and a decrease in megakaryocyte/erythrocyte progenitors (MEPs) were also observed in the bone marrow. In addition, CPPD administration induced production of IL-1β, which acts on hematopoietic stem cells and hematopoietic progenitors and promotes myeloid cell differentiation and expansion. These results suggest that CPPD crystals act as a “danger signal” to induce IL-1β production, resulting in changes in course of hematopoietic progenitor cell differentiation and in increased granulocyte/monocyte levels, and contributing to the development of gout.


2006 ◽  
Vol 34 (5) ◽  
pp. 680-687 ◽  
Author(s):  
Jack Gold ◽  
Helen M. Valinski ◽  
Adrianne N. Hanks ◽  
Karen K. Ballen ◽  
Chung-Cheng Hsieh ◽  
...  

2016 ◽  
Vol 311 (3) ◽  
pp. H725-H734 ◽  
Author(s):  
Hélène Vancraeyneste ◽  
Rogatien Charlet ◽  
Yann Guerardel ◽  
Laura Choteau ◽  
Anne Bauters ◽  
...  

Platelets are capable of binding, aggregating, and internalizing microorganisms, which enhances the elimination of pathogens from the blood. The yeast Candida albicans is a pathobiont causing life-threatening invasive infections. Its cell wall contains β-1,3 glucans that are known to trigger a wide range of host cell activities and to circulate during infection. We studied the effect of β-1,3 glucan fractions (BGFs) consisting of diglucosides (Glc2), tetraglucosides (Glc4), and pentaglucosides (Glc5) on human platelets, their mechanisms of action, and their possible impact on host defenses. The effect of BGFs on the coagulation process was determined by measuring thrombin generation. Platelets pretreated with BGFs were analyzed in terms of activation, receptor expression, aggregation, and adhesion to neutrophils and to C. albicans. The results show that BGFs affected the endogenous thrombin potential in a concentration-dependent manner. For platelet activation, BGFs at a low concentration (2 μmol/l) reduced ATP release and prevented the phosphorylation of protein kinase C. BGFs diminished the expression of P-selectin and the activation of αIIbβ3. BGFs decreased platelet aggregation and the interaction between thrombin-stimulated platelets and neutrophils, fibrinogen, and C. albicans. GLc5 decreased ATP release and TGF-β1 production in response to TLR4 upregulation in thrombin-stimulated platelets, but TLR4 blockage abolished the effect of BGFs on platelets. This study provides evidence that fungal pentaglucosides modulate platelet activity mediated via TLR4 stimulation and reduce platelet-neutrophil interaction.


2001 ◽  
Vol 280 (2) ◽  
pp. H522-H527 ◽  
Author(s):  
Prasad V. G. Katakam ◽  
Jennifer S. Pollock ◽  
David M. Pollock ◽  
Michael R. Ujhelyi ◽  
Allison W. Miller

Hyperinsulinemia, a primary feature of insulin resistance, is associated with increased endothelin-1 (ET-1) activity. This study determined the vascular response to ET-1 and receptor binding characteristics in small mesenteric arteries of insulin-resistant (IR) rats. Rats were randomized to control (C) ( n = 32) or IR ( n = 32) groups. The response to ET-1 was assessed (in vitro) in arteries with (Endo+) and without (Endo−) endothelium. In addition, arteries (Endo+) were pretreated with the ETBantagonist A-192621 or the ETA antagonist A-127722. Finally, binding characteristics of [125I]ET-1 were determined. Results showed that in Endo+ arteries the maximal relaxation ( E max) to ET-1 was similar between C and IR groups; however, the concentration at 50% of maximum relaxation (EC50) was decreased in IR arteries. In Endo− arteries, the E max to ET-1 was enhanced in both groups. Pretreatment with A-192621 enhanced the E max and EC50 to ET-1 in both groups. In contrast, A-127722 inhibited the ET-1 response in all arteries in a concentration-dependent manner; however, a greater ET-1 response was seen at each concentration in IR arteries. Maximal binding of [125I]ET-1 was increased in IR versus C arteries although the dissociation constant values were similar. In conclusion, we found the vasoconstrictor response to ET-1 is enhanced in IR arteries due to an enhanced expression of ET receptors and underlying endothelial dysfunction.


2000 ◽  
Vol 279 (1) ◽  
pp. H35-H46 ◽  
Author(s):  
Yong-Fu Xiao ◽  
Sterling N. Wright ◽  
Ging Kuo Wang ◽  
James P. Morgan ◽  
Alexander Leaf

Voltage-gated cardiac Na+ channels are composed of α- and β1-subunits. In this study β1-subunit was cotransfected with the α-subunit of the human cardiac Na+ channel (hH1α) in human embryonic kidney (HEK293t) cells. The effects of this coexpression on the kinetics and fatty acid-induced suppression of Na+currents were assessed. Current density was significantly greater in HEK293t cells coexpressing α- and β1-subunits ( I Na,αβ) than in HEK293t cells expressing α-subunit alone ( I Na,α). Compared with I Na,α, the voltage-dependent inactivation and activation of I Na,αβ were significantly shifted in the depolarizing direction. In addition, coexpression with β1-subunit prolonged the duration of recovery from inactivation. Eicosapentaenoic acid [EPA, C20:5(n–3)] significantly reduced I Na,αβ in a concentration-dependent manner and at 5 μM shifted the midpoint voltage of the steady-state inactivation by −22 ± 1 mV. EPA also significantly accelerated channel transition from the resting state to the inactivated state and prolonged the recovery time from inactivation. Docosahexaenoic acid [C22:6(n–3)], α-linolenic acid [C18:3(n–3)], and conjugated linoleic acid [C18:2(n–6)] at 5 μM significantly inhibited both I Na,αβ and I Na,α.In contrast, saturated and monounsaturated fatty acids had no effects on I Na,αβ. This finding differs from the results for I Na,α, which was significantly inhibited by both saturated and unsaturated fatty acids. Our data demonstrate that functional association of β1-subunit with hH1α modifies the kinetics and fatty acid block of the Na+ channel.


2013 ◽  
Vol 33 (1) ◽  
pp. 3-13 ◽  
Author(s):  
SC Semprebon ◽  
 de Fátima ◽  
SR Lepri ◽  
D Sartori ◽  
LR Ribeiro ◽  
...  

(R)-Goniothalamin (R-GNT) is a secondary metabolite isolated from the plants of the genus Goniothalamus. This molecule has attracted the attention of researchers because of its selective cytotoxicity against tumor cells and its ability to induce apoptosis. (S)-Goniothalamin (S-GNT) is a synthetic enantiomer of R-GNT, and its mechanism of action is largely unknown. In this study, we investigated the activity of S-GNT in a human non-small cell lung cancer NCI-H460 cells. We observed that the cells exposed to this compound exhibited cytotoxicity in a concentration-dependent manner. Based on the data obtained through the assessment of apoptosis induction in situ and the comet assay, we suggest that this cytotoxicity occurs due to the potential ability of this molecule to induce DNA damage with the consequent induction of cell death via apoptosis. A significant reduction in the messenger RNA levels of baculoviral inhibitor of apoptosis repeat-containing 5 ( BIRC5) gene that encodes the survivin protein was found. This novel finding may explain the inhibition of cell proliferation and induction of apoptosis in tumor cells caused by this compound.


1999 ◽  
Vol 91 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Keith E. Friend ◽  
Robert Radinsky ◽  
Ian E. McCutcheon

Object. This study was undertaken to explore the effects of growth hormone (GH) and the GH-stimulated peptide insulin-like growth factor—1 (IGF-1) on the growth rate of meningiomas.Methods. Polymerase chain reaction and ribonuclease protection assays were used to demonstrate that GH receptor messenger RNA was present in all 14 meningioma specimens studied, regardless of tumor grade. Both wild type (GHRwt) and a previously described exon 3 deletion isoform (GHRd3) of the GH receptor were identified in individual tumor specimens. The importance of the GH receptor was assessed using a GH receptor antagonist (B2036). Blockade of the GH receptor with B2036 reduced serum-induced DNA synthesis, as measured by thymidine incorporation, by 8 to 33% (mean 20%) in primary meningioma cultures. Tumors that expressed the GHRwt and GHRd3 isoforms, or a combination of the two, were all responsive to antagonist treatment. The importance of IGF-1 in stimulating meningioma cell growth was also assessed. It was found that IGF-1 increased thymidine incorporation in primary meningioma cultures in a dose-dependent manner: 1 ng/ml, 5 ng/ml, and 10 ng/ml resulted in increases in thymidine incorporation of 21%, 43%, and 176%, respectively, over baseline values.Conclusions. In these studies the authors demonstrate that activation of the GH/IGF-1 axis significantly increases the growth rate of meningiomas. Blockade of the GH receptor on tumor cells inhibited tumor growth. If these findings are confirmed in animal studies, agents that downregulate the GH/IGF-1 axis might represent a potential adjuvant therapy in the management of patients with meningioma.


2013 ◽  
Vol 305 (5) ◽  
pp. C547-C557 ◽  
Author(s):  
Wen-Hao Dong ◽  
Jia-Chen Chen ◽  
Yan-Lin He ◽  
Jia-Jie Xu ◽  
Yan-Ai Mei

Resveratrol (REV) is a naturally occurring phytoalexin that inhibits neuronal K+ channels; however, the molecular mechanisms behind the effects of REV and the relevant α-subunit are not well defined. With the use of patch-clamp technique, cultured cerebellar granule cells, and HEK-293 cells transfected with the Kv2.1 and Kv2.2 α-subunits, we investigated the effect of REV on Kv2.1 and Kv2.2 α-subunits. Our data demonstrated that REV significantly suppressed Kv2.2 but not Kv2.1 currents with a fast, reversible, and mildly concentration-dependent manner and shifted the activation or inactivation curve of Kv2.2 channels. Activating or inhibiting the cAMP/PKA pathway did not abolish the inhibition of Kv2.2 current by REV. In contrast, activation of PKC with phorbol 12-myristate 13-acetate mimicked the inhibitory effect of REV on Kv2.2 by modifying the activation or inactivation properties of Kv2.2 channels and eliminated any further inhibition by REV. PKC and PKC-α inhibitor completely eliminated the REV-induced inhibition of Kv2.2. Moreover, the effect of REV on Kv2.2 was reduced by preincubation with antagonists of GPR30 receptor and shRNA for GPR30 receptor. Western blotting results indicated that the levels of PKC-α and PKC-β were significantly increased in response to REV application. Our data reveal, for the first time, that REV inhibited Kv2.2 currents through PKC-dependent pathways and a nongenomic action of the oestrogen receptor GPR30.


Sign in / Sign up

Export Citation Format

Share Document