scholarly journals Role of lncRNA Morrbid in PTPN11(Shp2)E76K-driven juvenile myelomonocytic leukemia

2020 ◽  
Vol 4 (14) ◽  
pp. 3246-3251
Author(s):  
Zhigang Cai ◽  
Chi Zhang ◽  
Jonathan J. Kotzin ◽  
Adam Williams ◽  
Jorge Henao-Mejia ◽  
...  

Abstract Mutations in PTPN11, which encodes the protein tyrosine phosphatase SHP2, contribute to ∼35% of cases of juvenile myelomonocytic leukemia (JMML). A common clinical picture in children with JMML is that it presents as a constitutive hyperinflammatory syndrome, partially reminiscent of chronic myelomonocytic leukemia in adults. Thus, a component of JMML is associated with a hyperinflammatory state and abundant innate immune cells such as neutrophils and monocytes. Recently, we showed that the evolutionarily conserved mouse lncRNA Morrbid is specifically expressed in myeloid cells and uniquely represses the expression of the proapoptotic gene Bim to regulate the lifespan of myeloid cells. However, its role in JMML has not been investigated. In this study, we characterized the role of Morrbid and its target Bim, which are significantly dysregulated in Shp2E76K/+-bearing myeloid cells, in driving JMML. Loss of Morrbid in a mouse model of JMML driven by the Shp2E76K/+ mutation resulted in a significant correction of myeloid and erythroid cell abnormalities associated with JMML, including overall survival. Consistently, patients with JMML who had PTPN11, KRAS, and NRAS mutations and high expression of MORRBID manifested poor overall survival. Our results suggest that Morrbid contributes to JMML pathogenesis.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1471-1471
Author(s):  
Santhosh Kumar Pasupuleti ◽  
Baskar Ramdas ◽  
Kai Yang ◽  
Chujing Zhang ◽  
Elliot Stieglitz ◽  
...  

Abstract Tumor-associated macrophages (TAMs) are a key component of tumor-infiltrating immune cells. Macrophages are largely characterized as M1 or M2 types, and TAMs have been shown to express an M2-like phenotype. TAMs endorse tumor progression and contribute to resistance to chemotherapies. However, it is unclear what the composition of M2 macrophages is in patients with Juvenile myelomonocytic leukemia (JMML) and how do these cells mechanistically contribute to JMML and/or relapse after bone marrow transplantation. To study the role of M2- TAMs in JMML development, we first examined the bulk RNA-sequence data in 90 JMML patients. These data demonstrated a significant increase in the expression of arginase-1 (Arg-1) and programmed cell death-1 (PD-1). Furthermore, single cell RNA-sequencing analysis of monocytes/macrophages from 4 JMML patients revealed higher expression of M2- macrophage markers/genes such as IL-10, CD163, MRC1/CD206, TGF-β1 and IL-1R1 compared to M1 macrophage (CD80, CCR7, IL-6, CXCL10, CXCL11 and TNF) expression. We hypothesized that in JMML, inflammatory myeloid cells including neutrophils and M2-macrophages express higher levels of arginase and PD-1, which may contribute to the local suppression of immune responses and damage the bone marrow microenvironment (BME) leading to poor engraftment of normal donor cells, resulting in relapse. To study how alterations in bone marrow (BM) macrophages (M1/M2) contribute to JMML development and relapse, we utilized a mouse model bearing Shp2 E76K mutation (Ptpn11 E76K/+) driven by lysosome-cre (Ptpn11 E76K/+; LysM-Cre+, indicated as Shp2* mice hereafter). This model is frequently used to study JMML as it manifests cardinal features of human JMML. In a competitive transplantation experiment using, Shp2* + Boy/J BM cells (1:1 ratio) transplanted into lethally irradiated Shp2* recipient mice, we show that Shp2* mutant cells out compete WT BoyJ cells and result in rapid growth of CD45.2+ Shp2* mutant mature myeloid cells, hematopoietic stem and progenitors (HSC/Ps) and M2- macrophages (F4/80+/CD206+) in the BM and spleen leading to leukemia relapse. To determine if modulating Arg-1 and PD-1/PD-L1 levels in the background of Shp2* mutant leukemic stem cells in Shp2* recipients would alter the overall engraftment and JMML development and relapse, we again performed a competitive transplantation experiment using, Shp2* + Boy/J (BM cells, 1:1 ratio) into Shp2* and WT recipient mice. After 8 weeks post transplantation, we investigated the role of Arg-1 and PD-L1 in Shp2* recipients using pharmacological inhibitors, CB-1158 (Arg-1 inhibitor; 100 mg/kg, orally) + anti-PD-L1 antibody (10 mg/kg, i.p) for 30 days. The Arg-1 + PD-L1 treatment significantly reduced the number of white blood cells, neutrophils, monocytes and improved RBC and platelet counts. The spleen and liver weights were significantly rescued as well. Interestingly, CD45.1 WT donor cells in the PB, BM, and spleen were significantly increased and a significant reduction of Shp2* mutant CD45.2+ mature myeloid cells in the PB, BM, and spleen was observed. Importantly, the frequency and absolute number of leukemic blasts, LSK (Lin-/Sca1+/c-KIT+) cells, short term hematopoietic cells (ST-HSCs), common myeloid progenitors (CMP), granulocyte macrophage progenitors (GMP) and megakaryocyte erythroid progenitors (MEP) were significantly reduced. Furthermore, the M2- TAMs were significantly reduced in the BM and spleen of Arg-1 + PD-L1 drug treated group compared to vehicle treated mice. Notably the CD8+ T-cells (IFN-γ+ and TNF-α+) were significantly improved in the drug treated mice. These data suggest that the suppression of arginase-1 allows for the arginine levels to increase, which promotes the proliferation of T-cells. Increasing arginine levels also promotes an anti-tumor immune response resulting in the emergence of CD45.1 WT HSCs as opposed to mutant CD45.2 HSCs, suggesting that Arg-1 + PD-L1 treatment is a novel therapeutic approach to treat patients with JMML and for preventing leukemia relapse after BM transplantation. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 159 (42) ◽  
pp. 1710-1719
Author(s):  
Krisztián Kállay ◽  
Judit Csomor ◽  
Emma Ádám ◽  
Csaba Bödör ◽  
Csaba Kassa ◽  
...  

Abstract: Introduction: Acquired bone marrow failures are rare but fatal diseases in childhood. Since 2013, Hungary has been participating as a full member in the work of the European Working Group on uniform diagnostics and therapy in patients with acquired bone marrow failure syndromes. Hypocellular refractory cytopenia of childhood has been emphasized as a frequent entity, transplanted by reduced intensity conditioning with excellent outcomes. Aim: To analyse and compare the results of treatment before and after our joining. Method: A total of 55 patients have been treated in the 8 centres of the Hungarian Pediatric Oncology Network during 5 years between 2013 and 2017 (severe aplastic anemia: 9, myelodysplastic syndrome: 41, juvenile myelomonocytic leukemia: 5 patients). Allogeneic hematopoietic stem cell transplantation was performed in severe aplastic anemia in 7 cases, while antithymocyte globulin was administered in one case and one patient died before diagnosis. In patients with myelodysplastic syndromes, watch and wait strategy was applied in 4, while transplantation in 37 cases. Reduced intensity conditioning was used in 54 percent of these cases. Transplantation was the treatment of choice in all 5 patients with juvenile myelomonocytic leukemia. Results: In the whole patient cohort, the time from diagnosis to treatment was median 92 (3–393) days, while in severe aplastic anemia median 28 (3–327) days only. Grade II–IV acute graft versus host disease occurred in 22.6%, grade III–IV in 6.8% and chronic in 11.2%. All the patients treated with severe aplastic anemia are alive and in complete remission (100%). The overall estimated survival rate is 85.1% in myelodysplastic syndrome, while 75% in juvenile myelomonocytic leukemia. The median follow-up was 30.4 (1.1–62.5) months. There was a remarkable increase in overall survival comparing the data before (1992–2012) and after (2013) joining the international group, 70% vs. 100% (p = 0.133) in severe aplastic anemia and 31.3% vs. 85.1% (p = 0.000026) in myelodysplastic syndrome. Conclusion: Due to a change in the paradigm of the conditioning regimen in hypocellular refractory cytopenia of childhood, the overall survival rate has significantly increased. Orv Hetil. 2018; 159(42): 1710–1719.


2020 ◽  
Vol 4 (23) ◽  
pp. 5915-5924
Author(s):  
Jana Oltova ◽  
Ondrej Svoboda ◽  
Olga Machonova ◽  
Petra Svatonova ◽  
David Traver ◽  
...  

Abstract Kit ligand (Kitlg) is pleiotropic cytokine with a prominent role in vertebrate erythropoiesis. Although the role of Kitlg in this process has not been reported in Danio rerio (zebrafish), in the present study we show that its function is evolutionarily conserved. Zebrafish possess 2 copies of Kitlg genes (Kitlga and Kitlgb) as a result of whole-genome duplication. To determine the role of each ligand in zebrafish, we performed a series of ex vivo and in vivo gain- and loss-of-function experiments. First, we tested the biological activity of recombinant Kitlg proteins in suspension culture from zebrafish whole-kidney marrow, and we demonstrate that Kitlga is necessary for expansion of erythroid progenitors ex vivo. To further address the role of kitlga and kitlgb in hematopoietic development in vivo, we performed gain-of-function experiments in zebrafish embryos, showing that both ligands cooperate with erythropoietin (Epo) to promote erythroid cell expansion. Finally, using the kita mutant (kitab5/b5 or sparse), we show that the Kita receptor is crucial for Kitlga/b cooperation with Epo in erythroid cells. In summary, using optimized suspension culture conditions with recombinant cytokines (Epo, Kitlga), we report, for the first time, ex vivo suspension cultures of zebrafish hematopoietic progenitor cells that can serve as an indispensable tool to study normal and aberrant hematopoiesis in zebrafish. Furthermore, we conclude that, although partial functional diversification of Kit ligands has been described in other processes, in erythroid development, both paralogs play a similar role, and their function is evolutionarily conserved.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonia E. Trojan ◽  
Michał J. Markiewicz ◽  
Katarzyna Leśkiewicz ◽  
Kinga A. Kocemba-Pilarczyk

Abstract Background/Aim During cancer progression metabolic reprogramming is observed in parallel to the alternation in transcriptional profiles of malignant cells. Recent studies suggest that metabolic isoenzymes of phosphofructokinase II (PFK-II) – PFKFB3 and PFKFB4, often induced in hypoxic environment, significantly contribute to enhancement of glucose metabolism and in consequence cancer progression. Materials and methods Using the publicly available data deposited in the R2 data base we performed a Kaplan–Meyer analysis for cancer patients divided into groups with high and low expression levels of PFKFB3/4, determined based on the median. Results Our data showed that high PFKFB3/4 expression significantly correlates with shorter overall survival in several cancers. Moreover, we found that neuroblastoma patients with poor overall survival and evidence free survival are characterized by high PFKFB3 and at the same time low PFKFB4 expression, whereas patients with high PFKFB4 expressions are characterized by significantly better overall survival/evidence free survival rates. Conclusion Our analysis clearly indicates that expression of PFKFB3/4 isoenzymes may have a key prognostic value for several cancers. What’s more, it seems that in neuroblastoma the prognostic value of PFK-II may be dependent on the relation between PFKFB3 and PFKFB4 isoenzyme expression, indicating that further studies analyzing the role of both cancer specific PFK-II isoenzymes are highly desired.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Roshni Patel ◽  
Baskar Ramdas ◽  
Lisa Deng ◽  
Victoria Jideonwo-Auman ◽  
Reuben Kapur

Background and Hypothesis: Juvenile myelomonocytic leukemia (JMML) is an aggressive, childhood leukemic disorder for which there are no efficacious chemotherapeutics. Gain-of-function (GOF) mutations in the SHP2 phosphatase oncogene, Ptpn11, are the most common associated mutations. In hematopoietic cells, these mutations lead to increased AKT and ERK activation, which results in hyperproliferation of myeloid cells. Clinically, this manifests as monocytic leukocytosis and marked splenomegaly with the consequence of severe thrombocytopenia. Previously, this lab has shown that pharmacological inhibition of p110d, the hematopoietic-specific catalytic subunit of PI3K, moderates monocytosis and splenomegaly in a JMML mouse model with a SHP2 GOF mutation (E76K mice). Additionally, BTK has been identified as a potential therapeutic target as it cooperates with PI3K to increase activation of AKT and ERK in myeloid cells. Using a dual-hit approach of targeting both PI3K p110d and BTK may serve as a valuable treatment design for JMML.   Experimental Design or Project Methods: We have treated E76K mice with a combination of 20mg/kg ACP319, a PI3K p110d-specific inhibitor, and 20mg/kg acalabrutinib, a BTK-specific inhibitor, via oral gavage twice daily for 21 days and performed hematopoietic analysis including the degree of splenomegaly, monocytosis, and thrombocytopenia.  Results: The combination treatment scheme significantly decreased monocytosis and ameliorated thrombocytopenia compared to vehicle treated mice. Furthermore, splenomegaly was significantly reduced in the combination-treated mice compared to vehicle.   Conclusion and Potential Impact: Combination chemotherapy with PI3K p110d- and BTK-specific inhibitors profoundly corrects disease state hallmarks of JMML, and may warrant further clinical investigation of efficacy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bolun Zhou ◽  
Shugeng Gao

Recent publications have revealed that N6-methyladenosine (m6A) modification is critically involved in tumorigenesis and metastasis. However, the correlation of m6A modification and immune infiltration in early-stage lung adenocarcinoma (LUAD) is still uncertain. We performed NMF clustering based on 23 m6A regulators and identify three distinct m6A clusters and three m6A related genes clusters (m6A cluster-R) in early-stage LUAD. The immune infiltrating levels were calculated using CIBERSORT, MCPcounter and ssGSEA algorithms. And we established the m6A-predictive score to quantify m6A modified phenotypes and predict immunotherapeutic responses. Based on the TME characteristics, different immune profiles were also identified among three m6A gene-related clusters. And the m6A-R-C2 was related to a favorable overall survival (OS), whereas m6A-R-C3 had unfavorable overall survival. The m6A-predictive score was built according to the expression levels of m6A-related genes, and patients could be stratified into subgroups with low/high scores. Patients with high scores had poor overall survival, enhanced immune infiltration, high tumor mutation burden and increased level of somatic mutation. Besides, patients with high scores had unfavorable overall survival in the anti-PD-1 cohort, whereas the overall survival of high-score patients was better in the adoptive T cell therapy cohort. Our work highlights that m6A modification is closely related to immune infiltration in early-stage LUAD, which also contributes to the development of more effective immunotherapy strategies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4335-4335
Author(s):  
Kim De Veirman ◽  
Siyang Yan ◽  
Ken Maes ◽  
Nathan De Beule ◽  
Sylvia Faict ◽  
...  

Introduction The AXL receptor tyrosine kinase (AXL) has emerged as a promising therapeutic target for cancer therapy. Recent studies revealed a crucial role of AXL signaling in proliferation, survival, dormancy and therapy resistance in different cancers including lung cancer, hepatocellular cancer and AML. In this study, we aimed to investigate the role of AXL in Multiple Myeloma (MM), focusing on myeloma cell dormancy and AXL expression in different cellular components of the bone marrow microenvironment. Material & Methods To investigate dormancy, we used the syngeneic murine 5TGM1 MM model. 5TGM1-GFP+cells were DiD-labeled and injected intravenously in naïve C57BL/KaLwRij mice. At end-stage, GFP+DiD+('dormant', non-proliferating) and GFP+DiD-('proliferating') MM cells were analyzed by flow cytometry for AXL expression. In addition, AXL expression was also analyzed in CD11b+ myeloid cells and in in vitrogenerated macrophages from the 5TMM model. The effects of AXL inhibition by R428 (BGB324|Bemcentinib, Sigma-Aldrich), a highly potent and AXL-specific small molecular inhibitor, on viability and induced apoptosis of MM cells was determined by Cell Titer Glo and AnnexinV/7AAD staining respectively. AXL expression in human myeloma cell lines (HMCL) (JJN3, U266 and LP-1) and murine 5TGM1 cells was analyzed by qRT-PCR and cytospin stainings. Patient cohorts (TT2/TT3) were used to correlate AXL expression and overall survival. Plasma of healthy donors and MM patients was analyzed by ELISA (R&D). Results Using the in vivo5TGM1 dormancy model, we demonstrated an increased expression of AXL (4x higher) in dormant MM cells compared to proliferating MM cells (n=3, p<0,05). Myeloma cell lines (JJN3, U266, 5TGM1) had a very low AXL expression, however, treatment with melphalan induced a more than twofold increase in AXL expression (n=3, p<0.05). The combination of melphalan and R428 significantly increased apoptosis of JJN3 (>10%), U266 (>20%) and LP-1 (>10%) cells compared to single agent therapy (n=6) (p<0.01). Using patient cohorts, we observed that AXL expression correlated with a good overall survival (p=0.006). In addition, plasma samples of patients (n=31) showed a decreased expression of AXL compared to samples of healthy controls (n=9) (p<0.001). This confirms our hypothesis that AXL is associated with dormancy and therefore correlates with a better overall survival. In a second part, we investigated AXL expression in 5TMM-derived myeloid cells and macrophages (n=3). We observed a high expression of AXL in myeloid derived suppressor cells and tumor associated macrophages compared to myeloma cells. In addition, we observed that myeloid cells were much more sensitive to R428 compared to MM cells (n=5, p>0.01). Conclusion We observed that AXL is highly expressed in dormant MM cells and environmental myeloid cells. Despite its association with a good prognosis in MM, AXL serves as an interesting target to eradicate dormant myeloma cells as AXL inhibitors affect viability and induce apoptosis of myeloma cells, especially in combination with melphalan. Therefore, AXL can be considered as a new therapeutic strategy, to target both the immunosuppressive myeloid cells and the residual cancer cells in MM patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3428-3428
Author(s):  
Y. Lucy Liu ◽  
Likang Xu ◽  
Robert P. Castleberry ◽  
Peter Dean Emanuel

Abstract Juvenile myelomonocytic leukemia (JMML) is a myelodysplastic/myeloproliferative disorder (MDS/MPD) of young children. It is characterized by monocytosis, leukocytosis, elevated fetal hemoglobin, hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF), low percentage of myeloblasts in bone marrow, and absence of the Philadelphia chromosome. The pathogenesis of JMML has been linked to dysregulated signal transduction through the NF1/RAS signaling pathway and PTPN11. This dysregulation results in JMML cells demonstrating selective hypersensitivity to GM-CSF in vitro dose-response assays. PTEN, a major negative regulator of the PI3-kinase pathway by virtue of its PIP3 phosphatase activity, was initially isolated as a tumor suppressor in a variety of malignancies. In order to evaluate the role of PTEN in the pathogenesis of JMML, we examined the status of PTEN in JMML patient samples. Peripheral blood or bone marrow was collected from 40 patients. Mononuclear cells (MNCs) were isolated and lysed in lysis buffer at a concentration of 107/ml. Total RNA was extracted from MNCs of patients and 17 normal individuals. Protein and mRNA levels of PTEN were evaluated by Western-blot and relative-quantitative real-time RT-PCR, respectively. We found that PTEN protein was decreased in 18 of 30 (60%) JMML patients, and the patients had significantly lower RNA expression of PTEN than normal controls (p=0.015). With the available samples we also evaluated AKT activity and MAP kinase (MAPK) levels. We found that MAPK levels were correlated well with the status of the PTEN in 12 of 27(44%), and AKT activity in 13 of 25 patients (52%). Our data indicates that PTEN is significantly deficient in JMML patients, and the low PTEN protein level is related to its low transcription of RNA in JMML patients. The role of PTEN in regulation of MAPK and AKT activities in JMML is under further evaluation by studying the upstream status of the RAS pathway prior to PTEN. This is the first investigation of PTEN deficiency in JMML patients, and additional investigations may help to further understand the pathogenetic mechanisms in JMML, as well as to guide the development of targeted therapeutics for JMML.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4630-4630
Author(s):  
Hoon Kook ◽  
Dong Kyun Han ◽  
Hyeong Jin Kang ◽  
Bin Cho ◽  
Nak Gyun Chung ◽  
...  

Abstract Recent advances in the diagnosis, molecular pathogenesis, classification and therapy have been made in the field of myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML) in childhood. We report a retrospective analysis of children with MDS and JMML diagnosed between 2001 and 2006 in Korea. In total, 135 patients were enrolled from 19 major hospitals with pediatric hematology oncology clinics: MDS, 96 (primary MDS, 77; constitutional anomalies with MDS, 13; treatment-related MDS, 6) and JMML, 39. The incidence of MDS/JMML was around 22.5/year, which is about 6% of childhood leukemia. Various classification systems including FAB, WHO, IPSS, CCC system, and pediatric adjustment of the WHO classification were applied. The median ages at diagnosis were 68 and 10 months in MDS, and JMML, respectively. Males dominated in JMML. Cytogenetic abnormalities were observed in 43% of MDS (monosomy 7, 5; trisomy 8, 3) and in 10% of JMML. Treatment was chosen by each institute’s preference: 34 patients with MDS received AML-type intensive chemotherapy, with complete remission rate of 82.0%. The 5-year Kaplan-Meier overall survival rate was 54% each for MDS and JMML. Survival of MDS patients was influenced by the marrow blast % (P = 0.007) and disease category (P= 0.006). Stem cell transplantations (SCT) were undertaken in 56 patients (MDS, 29; JMML, 27). The sources of stem cells were: bone marrow, 36; umbilical cord, 18; peripheral blood, 2). Matched related transplants were 9 cases. Conditioning was various, but BuCy based regimen was used in 68.4%. Acute GvHD ≥ Grade II was found in 43.8% and chronic GvHD in 35.1%. The 5-year Kaplan-Meier overall survival rate was 55% for MDS, and 57% for JMML. Survival after unrelated transplant was comparable with that of matched related transplants. This analysis inspired the necessity of nation-wide prospective studies in Korea, including morphologic study by a central pathology review board, epidemiologic study, molecular pathophysiologic study, and therapeutic trials incorporating SCTs, or new drugs.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1655-1655
Author(s):  
Christopher Felix Krombholz ◽  
Angelina Meier ◽  
Konrad Aumann ◽  
Silvia Fluhr ◽  
Matthias Kollek ◽  
...  

Abstract Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of early childhood with often fatal outcome. Despite many attempts to develop alternative treatment options allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative modality. In the past our group has linked the prognosis of JMML to differential DNA methylation patterns (Olk-Batz, Blood 2011;117:4871-80 and Poetsch, Epigenetics 2014;9:1252-60), suggesting a key role of epigenetic modifications in JMML pathophysiology. To overcome the lack of suitable preclinical JMML research models we have developed an ex vivo JMML xenotransplantation system using neonatal Rag2-/- gamma-c-/- mice. Transplantation of 1x106 primary JMML cells resulted in stable xenologous engraftment and reproduced a characteristic JMML phenotype including myelomonocytic expansion; infiltration of spleen, liver and, notably, lung; splenomegaly; and reduced survival (median 26 weeks). Persistent human engraftment and leukemic organ infiltration was confirmed by both flow cytometry and immunohistology. Ras pathway mutations present in xenotransplanted patient samples were invariably confirmed in engrafted tissues. In addition, the model sustained serial transplantations and can therefore be used to amplify scarce patient material. We first tested if DNA methylation patterns in JMML cells were stable even after xenologous engraftment because such stability would be a prerequisite if the model were to be used for preclinical investigation of DNA methyltransferase inhibitors. JMML cells before xenotransplantation and those retrieved from the bone marrow of engrafted mice were profiled for global CpG methylation using Illumina 450K arrays. DNA methylation patterns in JMML were patient-specific and surprisingly robust in functional regions over several months of engraftment time (on average, 0.29% of 30877 promoters and 0.25 % of 30725 intragenic regions were called as "differentially methylated" between source and xenograft; 0.2 β-value change cutoff). These findings confirm the suitability of the xenograft model to investigate JMML epigenetics and, more importantly, indicate that patient-specific epigenetic profiles originate in leukemia-initiating stem cells, reinforcing a fundamental role of these alterations in JMML biology. Our group recently published a retrospective case series demonstrating unprecedented clinical efficacy of the DNA methyltransferase inhibitor 5-azacytidine (5AC) to induce partial or complete remissions in JMML before allogeneic HSCT (Cseh, Blood 2015;125:2311-3). To further investigate the drug on the preclinical level we administered 5AC to Rag2-/- gamma-c-/- mice xenografted with primary JMML cells. After a leukemia establishment phase the mice were divided into treatment or mock groups and treated with 5AC (3mg/kg body weight i.p., N=6) or saline (N=6) for 2 cycles (1 dose daily for 5 days; 9 days of recovery). This regimen was tolerated well by the animals. We found that 5AC reduced JMML infiltration in all organs analyzed, with most pronounced effects in spleen (human CD45+ fraction of all CD45+ cells, 0.24% +/- 0.04% vs 39.78% +/- 10.72%; p<0.01) and lung (0.41% +/-0.18% vs 42.88% +/-8.42%; p<0.01). The proportion of early progenitor cells (CD34+) within the human leukemia population in murine bone marrow was dramatically reduced after 5AC treatment (7.89% +/-0.74% vs 32.65% +/-3.76%; p<0.01) while the amount of granulocytes increased simultaneously (44.90% +/-1.74% vs 9.35% +/-1.95%; p<0.01). These findings suggest a loss of JMML cells induced by forced differentiation of more immature cells into mature myelomonocytic cells with reduced proliferation potential. Bisulfite pyrosequencing of the human BMP4 promoter CpG island, a locus frequently hypermethylated in JMML, showed significantly reduced DNA methylation in JMML cells retrieved from 5AC-treated mice (31.32% +/-2.66% vs 52.46% +/-1.39%; p<0.001). In summary we created an ex vivo JMML xenograft model in immunodeficient mice that reflects many important aspects of this disorder and proved its usefulness for preclinical research of DNA methyltransferase inhibition because of extraordinary stability of leukemic DNA methylation patterns. 5AC showed clear preclinical efficacy in this model, supporting its further development in clinical treatment strategies for JMML. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document