Transforming growth factor beta induces Beclin-1 in pulmonary arterial endothelial cells

Author(s):  
Po Ru Chen ◽  
Ying Ju Lai
1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


1987 ◽  
Vol 105 (2) ◽  
pp. 957-963 ◽  
Author(s):  
O Saksela ◽  
D Moscatelli ◽  
D B Rifkin

Basic fibroblast growth factor (bFGF), a potent inducer of angiogenesis in vivo, stimulates the production of both urokinase- and tissue-type plasminogen activators (PAs) in cultured bovine capillary endothelial cells. The observed increase in proteolytic activity induced by bFGF was effectively diminished by picogram amounts of transforming growth factor beta (TGF beta), but could not be abolished by increasing the amount of TGF beta. However, the inhibition by TGF beta was greatly enhanced if the cells were pretreated with TGF beta before addition of bFGF. After prolonged incubation of cultures treated simultaneously with bFGF and TGF beta, the inhibitory effect of TGF beta diminished and the stimulatory effect of the added bFGF dominated as assayed by PA levels. TGF beta did not alter the receptor binding of labeled bFGF, nor did a 6-h pretreatment with TGF beta reduce the amount of bFGF bound. The major difference between the effects of bFGF and TGF beta was that while bFGF effectively enhanced PA activity expressed by the cells, TGF beta decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production. Both bFGF and TGF beta increased the secretion of the endothelial-type plasminogen activator inhibitor.


1987 ◽  
Author(s):  
O Saksela ◽  
D Moscatelli ◽  
D B Rifkin

Basic fibroblast growth factor (bFGF), a potent inducer of angio-genesis in vivo, stimulates the production of both the cell-associated and the secreted forms of urokinase-and tissue-type plasminogen activators (PA) in cultured bovine capillary endothelial cells. This stimulation was counteracted by picogram amounts of transforming growth factor beta The stimulatory effect of bFGF was not completely abolished by increasing the amount of TGFb However, the inhibition by TGFb was greatly enhanced if the cells were pretreated for 1-3 hours with TGFb before addition of bFGF, and the inhibition was almost total, if the' preincubationtime with TGFb was 6 hours.Sequential chanqes of serum-containing medium prior to addition ofbFGF also blocked the PA stimulatory effect of bFGF. This inhibitory activity of serum was reduced by incubation of the serum with anti-TGFb-IgG. After pro-longed incubation of cultures treated simultaneously with bFGF' and TGFb, the inhibitory effect of the added bFGF dominated as assayed by PAlevels. TGFbdid not alter the receptor binding of labeled bFGF, nor did a 6 hour pretreatment with TGFb reducethe amount of bound bFGF. The major difference between effects by bFGF and TGFb was thatwhile bFGF effectively enhanced PA-activi-ty expressed by the cells, TGF decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production and proenzyme activation. Both bFGF and TGFb increased the secretion of the endothelial type 1 plasminogen activatorinhibitor (PAI 1). The highest concentration of TGFb is found in platelets, and it is known to be released during clot formation. The suppression of PA production by theendothelium by the release of TGFb shouldresult in a decrease in the fibrinolytic activity and promote clot maintenance. In addition, the rapid stimulation of high levels of PAI 1 secretion from the surrounding capillarycells by platelet released TGFb may further suppress fibrinolysis'. The reversabil it.y of theTGFb effect and domination of bFGF stimulation may be important in relation to the subsequentonset of clot lysis or angiogenesis leadino to thrombus reorganization and wound healing.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1013-1019 ◽  
Author(s):  
SR Slivka ◽  
DJ Loskutoff

Abstract A model system consisting of thrombin-stimulated bovine platelet releasates (PRthr) and bovine aortic endothelial cells (BAEs) was developed to determine if the interaction between platelets and endothelial cells regulates fibrinolysis. Zymographic analysis indicated that PRthr treatment of BAEs decreases urokinase and increases type 1 plasminogen activator inhibitor (PAI-1) activity. Although PRthr did not affect the overall rate of BAE protein synthesis, it increased PAI-1 biosynthesis within 6 hours. This increase was complete by 12 hours, with maximum stimulation at 10 to 15 micrograms/mL PRthr (1 microgram approximately 10(7) platelets). Neutralizing antibodies to transforming growth factor beta (TGF beta) reduced this effect by 75%. Treatments that activate latent TGF beta (eg, acidification or plasmin) increased this effect approximately fivefold, suggesting that TGF beta in PRthr exists in both a latent (approximately 80%) and an active (approximately 20%) form. In contrast to PRthr, adenosine diphosphate-prepared platelet releasates did not increase PAI-1 synthesis before acidification, indicating that they contain only the latent form of TGF beta. These results suggest that platelets can modulate the fibrinolytic system of the endothelium through the release of TGF beta, and that the mechanism by which the platelets are activated can influence the relative amount of active TGF beta.


1991 ◽  
Vol 113 (6) ◽  
pp. 1439-1445 ◽  
Author(s):  
S Kojima ◽  
P C Harpel ◽  
D B Rifkin

Conditioned medium (CM) derived from co-cultures of bovine aortic endothelial cells (BAECs) and bovine smooth muscle cells (BSMCs) contains transforming growth factor-beta (TGF-beta) formed via a plasmin-dependent activation of latent TGF-beta (LTGF beta), which occurs in heterotypic but not in homotypic cultures (Sato, Y., and D. B. Rifkin. 1989. J. Cell Biol. 107: 1199-1205). The TGF-beta formed is able to block the migration of BSMCs or BAECs. We have found that the simultaneous addition to heterotypic culture medium of plasminogen and the atherogenic lipoprotein, lipoprotein (a) (Lp(a)), which contains plasminogen-like kringles, inhibits the activation of LTGF-beta in a dose-dependent manner. The inclusion of LDL in the culture medium did not show such an effect. Control experiments indicated that Lp(a) does not interfere with the basal level of cell migration, the activity of exogenous added TGF-beta, the release of LTGF-beta from cells, the activation of LTGF-beta either by plasmin or by transient acidification, or the activity of plasminogen activator. The addition of Lp(a) to the culture medium decreased the amount of plasmin found in BAECs/BSMCs cultures. Similar results were obtained using CM derived from cocultures of human umbilical vein endothelial cells and human foreskin fibroblasts. These results suggest that Lp(a) can inhibit the activation of LTGF-beta by competing with the binding of plasminogen to cell or matrix surfaces. Therefore, high plasma levels of Lp(a) might enhance smooth muscle cell migration by decreasing the levels of the migration inhibitor TGF-beta thus contributing to generation of the atheromatous lesions.


Sign in / Sign up

Export Citation Format

Share Document