scholarly journals Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz

2010 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Thomas Schmidt ◽  
Malte Lenders ◽  
Andrea Hillebrand ◽  
Nicole van Deenen ◽  
Oliver Munt ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Shweta Chhajed ◽  
Tong Zhang ◽  
Joseph M. Collins ◽  
Qiuying Pang ◽  
...  

AbstractDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4556 ◽  
Author(s):  
Diana Kopcsayová ◽  
Eva Vranová

Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.


1998 ◽  
Vol 180 (2) ◽  
pp. 359-365 ◽  
Author(s):  
Claes Gustafsson ◽  
Britt C. Persson

ABSTRACT An Escherichia coli mutant lacking the modified nucleotide m1G in rRNA has previously been isolated (G. R. Björk and L. A. Isaksson, J. Mol. Biol. 51:83–100, 1970). In this study, we localize the position of the m1G to nucleotide 745 in 23S rRNA and characterize a mutant deficient in this modification. This mutant shows a 40% decreased growth rate in rich media, a drastic reduction in loosely coupled ribosomes, a 20% decreased polypeptide chain elongation rate, and increased resistance to the ribosome binding antibiotic viomycin. TherrmA gene encoding 23S rRNA m1G745 methyltransferase was mapped to bp 1904000 on the E. colichromosome and identified to be identical to the previously sequenced gene yebH.


1988 ◽  
pp. 259-269
Author(s):  
A. Parmeggiani ◽  
P. H. Anborgh ◽  
R. H. Cool ◽  
E. Jacquet ◽  
M. Jensen ◽  
...  

2009 ◽  
Vol 75 (23) ◽  
pp. 7453-7460 ◽  
Author(s):  
Jens Schneider ◽  
Christin Fricke ◽  
Heike Overwin ◽  
Birgit Hofmann ◽  
Bernd Hofer

ABSTRACT An amylosucrase gene was subjected to high-rate segmental random mutagenesis, which was directed toward a segment encoding amino acids that influence the interaction with substrate molecules in subsites −1 to +3. A screen was used to identify enzyme variants with compromised glucan chain elongation. With an average mutation rate of about one mutation per targeted codon, a considerable fraction (82%) of the clones that retained catalytic activity were deficient in this trait. A detailed characterization of selected variants revealed that elongation terminated when chains reached lengths of only two or three glucose moieties. Sequencing showed that the amylosucrase derivatives had an average of no more than two amino acid substitutions and suggested that predominantly exchanges of Asp394 or Gly396 were crucial for the novel properties. Structural models of the variants indicated that steric interference between the amino acids introduced at these sites and the growing oligosaccharide chain are mainly responsible for the limitation of glucosyl transfers. The variants generated may serve as biocatalysts for limited addition of glucose moieties to acceptor molecules, using sucrose as a readily available donor substrate.


2006 ◽  
Vol 188 (5) ◽  
pp. 1875-1881 ◽  
Author(s):  
Joanna Zawadzka-Skomiał ◽  
Zdzislaw Markiewicz ◽  
Martine Nguyen-Distèche ◽  
Bart Devreese ◽  
Jean-Marie Frère ◽  
...  

ABSTRACT Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryl-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M−1 s−1 from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (d-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxypeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to β-lactam antibiotics but did increase the resistance of the mutant to moenomycin.


2017 ◽  
Vol 82 (6) ◽  
pp. 1011-1020 ◽  
Author(s):  
Satoshi Yamashita ◽  
Makie Mizuno ◽  
Hidehiko Hayashi ◽  
Haruhiko Yamaguchi ◽  
Yukino Miyagi-Inoue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document