scholarly journals RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 319 ◽  
Author(s):  
Dahai Yang ◽  
Qin Liu ◽  
Minjun Yang ◽  
Haizhen Wu ◽  
Qiyao Wang ◽  
...  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Khushal Singh Solanki ◽  
Ravi Kumar Gandham ◽  
Prasad Thomas ◽  
Pallab Chaudhuri

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 464 ◽  
Author(s):  
Cheng Xu ◽  
Øystein Evensen ◽  
Hetron Mweemba Munang’andu

Type I interferons (IFNs) have been shown to play an important role in shaping adaptive immune responses in addition to their antiviral properties in immune cells. To gain insight into the impact of IFN-I-induced pathways involved in early adaptive immune responses, i.e., antigen-presenting pathways, in an Atlantic salmon-derived (Salmo salar L.) macrophage cell line (TO-cells), we used a comparative de novo transcriptome analysis where cells were treated with IFN-I or kept untreated and concurrently infected with salmonid alphavirus subtype 3 (SAV3). We found that concurrent treatment of TO-cells with IFN-I and SAV3 infection (SAV3/IFN+) significantly enriched the major histocompatibility complex class I (MHC-I) pathway unlike the non-IFN-I treated TO-cells (SAV3/IFN−) that had lower expression levels of MHC-I pathway-related genes. Genes such as the proteasomal activator (PA28) and β-2 microglobulin (β2M) were only differentially expressed in the SAV3/IFN+ cells and not in the SAV3/IFN− cells. MHC-I pathway genes like heat shock protein 90 (Hsp90), transporter of antigen associated proteins (TAPs) and tapasin had higher expression levels in the SAV3/IFN+ cells than in the SAV3/IFN− cells. There were no MHC-II pathway-related genes upregulated in SAV3/IFN+-treated cells, and cathepsin S linked to the degradation of endosomal antigens in the MHC-II pathway was downregulated in the SAV3/IFN− cells. Overall, our findings show that concurrent IFN-I treatment of TO-cells and SAV3 infection enriched gene expression linked to the MHC-I antigen presentation pathway. Data presented indicate a role of type I IFNs in strengthening antigen processing and presentation that may facilitate activation particularly of CD8+ T-cell responses following SAV3 infection, while SAV3 infection alone downplayed MHC-II pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pep Amengual-Rigo ◽  
Victor Guallar

AbstractAntigens presented on the cell surface have been subjected to multiple biological processes. Among them, C-terminal antigen processing constitutes one of the main bottlenecks of the peptide presentation pathways, as it delimits the peptidome that will be subjected downstream. Here, we present NetCleave, an open-source and retrainable algorithm for the prediction of the C-terminal antigen processing for both MHC-I and MHC-II pathways. NetCleave architecture consists of a neural network trained on 46 different physicochemical descriptors of the cleavage site amino acids. Our results demonstrate that prediction of C-terminal antigen processing achieves high accuracy on MHC-I (AUC of 0.91), while it remains challenging for MHC-II (AUC of 0.66). Moreover, we evaluated the performance of NetCleave and other prediction tools for the evaluation of four independent immunogenicity datasets (H2-Db, H2-Kb, HLA-A*02:01 and HLA-B:07:02). Overall, we demonstrate that NetCleave stands out as one of the best algorithms for the prediction of C-terminal processing, and we provide one of the first evidence that C-terminal processing predictions may help in the discovery of immunogenic peptides.


Parasitology ◽  
2021 ◽  
Vol 148 (6) ◽  
pp. 712-725
Author(s):  
Arnar K. S. Sandholt ◽  
Feifei Xu ◽  
Robert Söderlund ◽  
Anna Lundén ◽  
Karin Troell ◽  
...  

Abstract


2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A873-A873
Author(s):  
Arika Feils ◽  
Mackenzie Heck ◽  
Anna Hoefges ◽  
Peter Carlson ◽  
Luke Zangl ◽  
...  

BackgroundMice bearing B78 melanoma tumors can be cured using an in situ vaccine (ISV) regimen that includes radiation (RT) together with immunocytokine (tumor-targeting mAb conjugated to IL-2). B78 melanoma cells, derived from B16 cells, express minimal to no MHC-I but express MHC-II upon IFN-g/TNF-a stimulation. Although B78 cells are primarily MHC-I-deficient, an increased CD8 T cell infiltration into the tumor microenvironment (TME) has been shown following ISV.1 To further investigate the potential role of specific immune cell lineages in the B78 anti-tumor response to ISV, immune subset depletion studies and flow cytometric analyses were performed.MethodsC57BL/6 mice bearing B78 tumors were depleted of immune cell subsets with mAbs (anti-CD4, anti-CD8, anti-NK1.1, or Rat IgG control) for 3 weeks during the course of treatment. Treatment groups included no treatment, RT (12 Gy), or ISV (RT D0 and immunocytokine D5-D9). 6 mice/group (repeated three times) were followed for survival/tumor growth, and flow cytometry studies included 4 mice/group, sacrificed on D8 and D13 following the start of ISV.ResultsMice depleted of CD4 T cells during the course of ISV showed a significant reduction of anti-tumor effect as compared to mice treated with ISV/Rat IgG (pConclusionsThese studies suggest that CD4 T cells are essential for an anti-tumor response in the B78 melanoma model. In vivo depletion data show that CD4 T cells, but not CD8 or NK cells, are required for a decrease in tumor growth via ISV. Flow cytometric analyses suggest an interplay between CD4 and CD8 T cells as indicated by a decrease in CD8/IFN-g expression following ISV in the absence of CD4 T cells. The role that MHC-I and MHC-II expression plays in this CD4/CD8 T cell anti-tumor response is under investigation. In future studies, B78 melanoma may serve as a critical syngeneic model for development of more effective immunotherapy treatment regimens.Ethics ApprovalAll animal experiments were performed in accordance with protocols approved by Animal Care and Use Committees of the University of Wisconsin-Madison.ReferenceMorris Z, Guy E, Francis D, et al. In situ tumor vaccination by combining local radiation and tumor-specific antibody or immunocytokine treatments. Cancer Res 2016;76(13):3929-3941.


Gene ◽  
2018 ◽  
Vol 645 ◽  
pp. 146-156 ◽  
Author(s):  
Soumyadev Sarkar ◽  
Somnath Chakravorty ◽  
Avishek Mukherjee ◽  
Debanjana Bhattacharya ◽  
Semantee Bhattacharya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document