scholarly journals New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features

BMC Genomics ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 224 ◽  
Author(s):  
Caroline Tapparel ◽  
Thomas Junier ◽  
Daniel Gerlach ◽  
Samuel Cordey ◽  
Sandra Van Belle ◽  
...  
2020 ◽  
Author(s):  
Afef Najjari ◽  
Hiba Mejri ◽  
Marwa Jabbari ◽  
Haitham Sghaier ◽  
Ameur Cherif ◽  
...  

Members of extremely halophilic archaea, currently consisting of more than 56 genera and 216 species, are known to produce their specific bacteriocin-like peptides and proteins called halocins, synthesized by the ribosomal pathway. Halocins are diverse in size, consisting of proteins as large as 35 kDa and peptide “microhalocins” as small as 3.6 kDa. Today, about fifteen halocins have been described and only three genes, halC8, halS8 and halH4, coding C8, S8 and H4 halocins respectively have been identified. In this study, a total of 1858 of complete and nearly complete genome sequences of Halobacteria class members were retrieved from the IMG and Genbank databases and then screened for halocin encoding gene content, based on the BLASTP algorithm. A total of 61 amino acid sequences belonging to three halocins classes (C8, HalH4 and S8) were identified within 15 genera with the abundance of C8 class. Phylogenetic analysis based on amino acids sequences showed a clear segregation of the three halocins classes. Halocin S8 was phylogenetically more close to HalH4. No clear segregation on species and genera levels was observed based on halocin C8 analysiscontrary to HalH4 based analysis. Collectively, these results give an overview on halocins diversity within halophilic archaea which can open new research topics that will shed light on halocins as marker for haloarchaeal phylogentic delineation.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Jean N. Hakizimana ◽  
Jean B. Ntirandekura ◽  
Clara Yona ◽  
Lionel Nyabongo ◽  
Gladson Kamwendo ◽  
...  

AbstractSeveral African swine fever (ASF) outbreaks in domestic pigs have been reported in Burundi and Malawi and whole-genome sequences of circulating outbreak viruses in these countries are limited. In the present study, complete genome sequences of ASF viruses (ASFV) that caused the 2018 outbreak in Burundi (BUR/18/Rutana) and the 2019 outbreak in Malawi (MAL/19/Karonga) were produced using Illumina next-generation sequencing (NGS) platform and compared with other previously described ASFV complete genomes. The complete nucleotide sequences of BUR/18/Rutana and MAL/19/Karonga were 176,564 and 183,325 base pairs long with GC content of 38.62 and 38.48%, respectively. The MAL/19/Karonga virus had a total of 186 open reading frames (ORFs) while the BUR/18/Rutana strain had 151 ORFs. After comparative genomic analysis, the MAL/19/Karonga virus showed greater than 99% nucleotide identity with other complete nucleotides sequences of p72 genotype II viruses previously described in Tanzania, Europe and Asia including the Georgia 2007/1 isolate. The Burundian ASFV BUR/18/Rutana exhibited 98.95 to 99.34% nucleotide identity with genotype X ASFV previously described in Kenya and in Democratic Republic of the Congo (DRC). The serotyping results classified the BUR/18/Rutana and MAL/19/Karonga ASFV strains in serogroups 7 and 8, respectively. The results of this study provide insight into the genetic structure and antigenic diversity of ASFV strains circulating in Burundi and Malawi. This is important in order to understand the transmission dynamics and genetic evolution of ASFV in eastern Africa, with an ultimate goal of designing an efficient risk management strategy against ASF transboundary spread.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


2018 ◽  
Vol 7 (22) ◽  
Author(s):  
Teng Long ◽  
Po Yee Wong ◽  
Wendy C. S. Ho ◽  
Robert D. Burk ◽  
Paul K. S. Chan ◽  
...  

The complete genomes of six Macaca mulatta papillomavirus types isolated from genital sites of rhesus monkeys were characterized, and less than 72% identity with the complete L1 genes of known papillomaviruses was found. Macaca mulatta papillomavirus type 2 (MmPV2), MmPV3, and MmPV6 cluster into the genus Alphapapillomavirus, and MmPV4, MmPV5, and MmPV7 cluster into the genus Gammapapillomavirus.


2018 ◽  
Vol 6 (13) ◽  
Author(s):  
My V. T. Phan ◽  
Claudia M. E. Schapendonk ◽  
Bas B. Oude Munnink ◽  
Marion P. G. Koopmans ◽  
Rik L. de Swart ◽  
...  

ABSTRACT Genetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing.


2018 ◽  
Vol 6 (7) ◽  
Author(s):  
Annette Fagerlund ◽  
Solveig Langsrud ◽  
Birgitte Moen ◽  
Even Heir ◽  
Trond Møretrø

ABSTRACT Listeria monocytogenes is a foodborne pathogen that causes the often-fatal disease listeriosis. We present here the complete genome sequences of six L. monocytogenes isolates of sequence type 9 (ST9) collected from two different meat processing facilities in Norway. The genomes were assembled using Illumina and Nanopore sequencing data.


2011 ◽  
Vol 193 (19) ◽  
pp. 5591-5592 ◽  
Author(s):  
Y. Zhang ◽  
C. Chen ◽  
J. Liu ◽  
H. Deng ◽  
A. Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document