scholarly journals Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein

2011 ◽  
Vol 11 (1) ◽  
pp. 62 ◽  
Author(s):  
Alessandro Alboresi ◽  
Luca Dall'Osto ◽  
Alessio Aprile ◽  
Petronia Carillo ◽  
Enrica Roncaglia ◽  
...  
2016 ◽  
Vol 43 (3) ◽  
pp. 221 ◽  
Author(s):  
Min Yan ◽  
Wen Jing ◽  
Ni Xu ◽  
Like Shen ◽  
Qun Zhang ◽  
...  

Reactive oxygen species (ROS) play a key signalling role in cells. Plant NADPH oxidases, also known as respiratory burst oxidase homologues (Rbohs), are well characterised ROS-generating systems. In this study, we found that the constitutively active small guanosine triphosphatase (GTPase) ROP11 (CA-ROP11) interacted with RbohF by using a yeast two-hybrid analysis, a pull-down assay and an in vivo bimolecular fluorescence complementation assay. The mutation of amino acid L336 or L337 in RbohF abolished its interaction with CA-ROP11. Coexpression of CA-ROP11 and wild-type RbohF in Nicotiana benthamiana Domin enhanced ROS production compared with coexpression of CA-ROP11 and mutant RbohF or of dominant negative ROP11 and wild-type RbohF. Moreover, CA-ROP11 overexpression resulted in ROS accumulation and a swollen root hair phenotype in Arabidopsis thaliana (L.) Heynh. The deletion of RbohF partially reduced the increase in ROS in Arabidopsis plants overexpressing CA-ROP11. These results suggest that Arabidopsis ROP11 modulates ROS production by interacting with RbohF in root hairs.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2021 ◽  
Author(s):  
Hui Song ◽  
Feng Chen ◽  
Xi Wu ◽  
Min Hu ◽  
Qingliu Geng ◽  
...  

Abstract Abstract Iron (Fe) is an indispensable mineral element for normal growth of plants. Fe deficiency induces a complex series of responses in plants, involving physiological and developmental changes, to increase Fe uptake from soil. However, the molecular mechanism involved in plant Fe-deficiency is not well understood. Here, we found that the MNB1 gene is involved in modulating Fe-deficiency response in Arabidopsis thaliana . The expression of MNB1 was inhabited by Fe-deficiency stress. Knockout of MNB1 led to enhanced Fe accumulation and tolerance, whereas the MNB1-overexpressing plants were sensitive to Fe-deficiency stress. Lower H 2 O 2 concentrations in mnb1 mutant plants were examined under Fe deficiency circumstances compared to wild-type. On the contray, higher H 2 O 2 concentrations were found in MNB1-overexpressing plants, which was adversely linked with malondialdehyde (MDA) concentrations. Furthermore, in mnb1 mutants, the transcription level of the Fe-uptake and translocation genes, FIT , IRT1 , FRO2 , Z IF , FRD3 , NAS4 , PYE and MYB72 , were considerably elevated during Fe-deficiency stress, resulting in higher Fe accumulation. Together, our findings show that the MNB1 gene negatively controls the Fe-deficiency response in Arabidopsis via modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling pathway, thereby affecting the expression of Fe-uptake and translocation genes.


2004 ◽  
Vol 286 (5) ◽  
pp. C1152-C1158 ◽  
Author(s):  
A. McArdle ◽  
J. van der Meulen ◽  
G. L. Close ◽  
D. Pattwell ◽  
H. Van Remmen ◽  
...  

Contractions of skeletal muscles produce increases in concentrations of superoxide anions and activity of hydroxyl radicals in the extracellular space. The sources of these reactive oxygen species are not clear. We tested the hypothesis that, after a demanding isometric contraction protocol, the major source of superoxide and hydroxyl radical activity in the extracellular space of muscles is mitochondrial generation of superoxide anions and that, with a reduction in MnSOD activity, concentration of superoxide anions in the extracellular space is unchanged but concentration of hydroxyl radicals is decreased. For gastrocnemius muscles from adult (6–8 mo old) wild-type ( Sod2+/+) mice and knockout mice heterozygous for the MnSOD gene ( Sod2+/-), concentrations of superoxide anions and hydroxyl radical activity were measured in the extracellular space by microdialysis. A 15-min protocol of 180 isometric contractions induced a rapid, equivalent increase in reduction of cytochrome c as an index of superoxide anion concentrations in the extracellular space of Sod2+/+ and Sod2+/- mice, whereas hydroxyl radical activity measured by formation of 2,3-dihydroxybenzoate from salicylate increased only in the extracellular space of muscles of Sod2+/+ mice. The lack of a difference in increase in superoxide anion concentration in the extracellular space of Sod2+/+ and Sod2+/- mice after the contraction protocol supported the hypothesis that superoxide anions were not directly derived from mitochondria. In contrast, the data obtained suggest that the increase in hydroxyl radical concentration in the extracellular space of muscles from wild-type mice after the contraction protocol most likely results from degradation of hydrogen peroxide generated by MnSOD activity.


2011 ◽  
Vol 168 (5) ◽  
pp. 434-440 ◽  
Author(s):  
Lung-Jiun Shin ◽  
Hsiang-En Huang ◽  
Hsiang Chang ◽  
Yi-Hsien Lin ◽  
Teng-Yung Feng ◽  
...  

2009 ◽  
Vol 22 (7) ◽  
pp. 868-881 ◽  
Author(s):  
Jeannine Lherminier ◽  
Taline Elmayan ◽  
Jérôme Fromentin ◽  
Khadija Tantaoui Elaraqui ◽  
Simona Vesa ◽  
...  

Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membrane. Comparison of the subcellular localization of ROS in wild-type tobacco and in plants transformed with antisense constructs of NtrbohD revealed that this enzyme is also responsible for the hydrogen peroxide production occurring at the plasma membrane after infiltration of tobacco leaves with cryptogein. Finally, the reactivity of wild-type and transformed plants to the elicitor and their resistance against the pathogenic oomycete Phytophthora parasitica were examined. NtrbohD-mediated hydrogen peroxide production does not seem determinant for either hypersensitive response development or the establishment of acquired resistance but it is most likely involved in the signaling pathways associated with the protection of the plant cell.


2003 ◽  
Vol 71 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Gary M. Cox ◽  
Thomas S. Harrison ◽  
Henry C. McDade ◽  
Carlos P. Taborda ◽  
Garrett Heinrich ◽  
...  

ABSTRACT Superoxide dismutase (SOD) is an enzyme that converts superoxide radicals into hydrogen peroxide and molecular oxygen and has been shown to contribute to the virulence of many human-pathogenic bacteria through its ability to neutralize toxic levels of reactive oxygen species generated by the host. SOD has also been speculated to be important in the pathogenesis of fungal infections, but the role of this enzyme has not been rigorously investigated. To examine the contribution of SOD to the pathogenesis of fungal infections, we cloned the Cu,Zn SOD-encoding gene (SOD1) from the human-pathogenic yeast Cryptococcus neoformans and made mutants via targeted disruption. The sod1 mutant strains had marked decreases in SOD activity and were strikingly more susceptible to reactive oxygen species in vitro. A sod1 mutant was significantly less virulent than the wild-type strain and two independent reconstituted strains, as measured by cumulative survival in the mouse inhalational model. In vitro studies established that the sod1 strain had attenuated growth compared to the growth of the wild type and a reconstituted strain inside macrophages producing reduced amounts of nitric oxide. These findings demonstrate that (i) the Cu,Zn SOD contributes to virulence but is not required for pathogenicity in C. neoformans; (ii) the decreased virulence of the sod1 strain may be due to increased susceptibility to oxygen radicals within macrophages; and (iii) other antioxidant defense systems in C. neoformans can compensate for the loss of the Cu,Zn SOD in vivo.


Sign in / Sign up

Export Citation Format

Share Document