scholarly journals The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations

BMC Ecology ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Toke T Høye ◽  
Mads C Forchhammer
Behaviour ◽  
1985 ◽  
Vol 95 (3-4) ◽  
pp. 261-289 ◽  
Author(s):  
Robert D. Montgomerie ◽  
Ralph V. Cantar

AbstractWe studied the incubation scheduling of 8 white-rumped sandpipers (Calidris fuscicollis), a species in which only the female incubates. Because the female is small and nests in the high arctic, these birds are probably under more cold stress than birds nesting in the temperate zone. We examined the individual and collective effects of several weather variables on a female's incubation behaviour to ascertain what amount of the variability within a day was directly attributable to weather conditions. Birds made an average of 25.1 off-nest trips each day, averaging 10.5 min each. This resulted in spending, on average, 82.5% of their time incubating eggs. There was a clear within-day cycle in incubation scheduling; birds made more and longer trips in the middle of the day and, as a result, spent more total time off the nest in that period. Birds adjusted their hour-by-hour schedules to weather largely by altering the number of trips made, and less so by adjusting trip length. There was a circadian rhythm in recess time/h, explaining at least 11% of the variation in recess time/h. When the circadian rhythm was controlled statistically, weather accounted for an average of 38% of the explainable variation in recess time/h. The relative importance of each weather variable on the recess time/h was (in descending order of importance): wind speed, air temperature, solar radiation, barometric pressure, and relative humidity. Weather (primarily wind speed and temperature) exerted its strongest effects early and late in the bird's active day (0400-2300 h). On cold and windy days, birds increased the time spent on their nests early and late in the day, and made more trips than usual in the middle of the day, when air temperature was highest. We suggest that the incubation scheduling of these birds conformed to the long-term predictability of the daily weather cycle by following a circadian rhythm of behaviour modified by a response to concurrent weather that would have reduced egg cooling.


2008 ◽  
Vol 45 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Krystopher J Chutko ◽  
Scott F Lamoureux

Proglacial lacustrine sediments from High Arctic Lake R (76°17.9′N, 90°59.3′W, unofficial name) are shown to be annually laminated (varved) and contain a variety of subannual structures. The formation of the subannual structures (and overall varve) was controlled by a combination of meteorologic (temperature and rainfall) and geomorphic factors. Using a training set of the ten thickest varves in the 38-year sedimentary record, a heuristic model was developed to link subannual structures with regional meteorological conditions. Within the training set, significant correlations were shown between subannual structure thickness and the magnitude of the corresponding melt event, defined as a period of continuously positive temperature. However, these correlations deteriorated as the varves progressively thinned, and several varves exhibited no relationship between their subannual structures and respective meteorological conditions. Grain size analyses showed that the thin varves were significantly finer than the thick varves and are inferred to reflect changed sediment inflow patterns that altered deposition and reduced the fidelity of the model. Despite these complexities, this study identified the potential to produce long-term, subannual reconstructions of weather conditions. Model results revealed the limitations of simple varve–meteorology relationships, as well as identified necessary environmental and sampling conditions required to produce a more robust model for future applications.


2000 ◽  
Vol 31 (4-5) ◽  
pp. 317-338 ◽  
Author(s):  
Kathy L. Young ◽  
Ming-ko Woo

High Arctic patchy wetlands are ecological oases in a polar desert environment and are vulnerable to climatic warming. At present, understanding of their responses to external factors (climate and terrain) is limited. This study examines a wetland located in a topographic depression maintained by seasonal snowmelt, ground ice melt and lateral inflows. The wetland is located on Cornwallis Island, Nunavut, Canada. Hydrological, climatological and soil observations were made over several summers with different weather conditions. The summers of 1996 and 1997 were cool and wet but the summer of 1998 was warm and dry. The melt in 1996 was rapid due to rain on snow events and only lasted six days. Deeper snow in 1997 prolonged the melt season to 18 days. A shallow snow-cover in 1998 and early melt depleted the snow by early June. Surface, groundwater and storage fluctuations in the wetland were dictated by snowmelt, rainfall, evaporation loss from the wetland and lateral inputs which in turn were controlled by the melting of the late-lying snow storage in the catchment. Soil factors influence the spatial variations in ground thaw which affects the surface and subsurface flow. Streamflow response of the wetland reflects a nival regime and augmentation of streamflow thoughout the summer season in all three years is supported by multiple water sources: ground ice melt and suprapermafrost water from a large late-lying snowpack. Overall, this study suggests that the survival of some patchy wetlands depends on their interaction with the surrounding basin, with a dependency probably being more important during warm and dry seasons.


2016 ◽  
Vol 121 (5) ◽  
pp. 1236-1248 ◽  
Author(s):  
Philipp R. Semenchuk ◽  
Casper T. Christiansen ◽  
Paul Grogan ◽  
Bo Elberling ◽  
Elisabeth J. Cooper

1986 ◽  
Vol 64 (11) ◽  
pp. 2405-2411 ◽  
Author(s):  
Charles R. Blem ◽  
Michael H. Shelor

Midwinter lipid depots of the white-throated sparrow (Zonotrichia albicollis) at Richmond, Virginia, are correlated with a suite of environmental and morphological variables. Lipid reserves allow this species to survive even the most extreme winter conditions for several hours. Variables having the greatest individual correlations with lipid reserve are average temperature of the 20 days prior to capture, fat class, body weight, and long-term (32-year) average temperature of the date of capture. A comprehensive multiple regression model based on analyses of all possible independent variables accounts for 87% of the variation in lipid reserves. The most important independent variables in this model are body weight, mean temperature of the 20 days preceding collection, fat class, extreme high temperature of the day of capture, long-term average temperature, relative humidity, chill factor, wet-bulb temperatures of the day before and the day of capture, wing length, and precipitation. The "best" equation using only measurements of environment as independent variables included time of collection in hours after sunrise and hours before sunset, Eastern Standard Time, temperature of the 20 days prior to capture, and mean wind velocity of the day before capture. Models computed solely from temperature measurements included dry-bulb temperatures of the day of capture and the day before capture, low extreme temperatures of the day of capture, wet-bulb temperatures of the day before capture, and the 20-day average dry-bulb temperature of the period prior to collection. Fattening in response to weather conditions appears to be a form of "fine-tuning" of energy reserves superimposed on a more stable, intrinsic cycle of winter fattening.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zbigniew Zając ◽  
Joanna Kulisz ◽  
Aneta Woźniak ◽  
Katarzyna Bartosik ◽  
Adil Khan

AbstractDermacentor reticulatus ticks are one of the most important vectors and reservoirs of tick-borne pathogens in Europe. Changes in the abundance and range of this species have been observed in the last decade and these ticks are collected in areas previously considered tick-free. This may be influenced by progressive climate change. Eastern Poland is an area where the local population of D. reticulatus is one of the most numerous among those described so far. At the same time, the region is characterized by a significant increase in the mean air temperature in recent years (by 1.81 °C in 2020) and a decrease in the average number of days with snow cover (by 64 days in 2020) and in the number of days with frost (by 20 days in 2020) on an annual basis compared to the long-term average. The aim of our research was to investigate the rhythms of seasonal activity and the population size of D. reticulatus in the era of progressive climate change. To this end, questing ticks were collected in 2017–2020. Next, the weather conditions in the years of observation were analyzed and compared with multi-year data covering 30 years preceding the study. The research results show that, in eastern Poland, there is a stable population of D. reticulatus with the peak of activity in spring or autumn (up to a maximum of 359 individuals within 30 min of collection) depending on the year of observation. Ticks of this species may also be active in winter months. The activity of D. reticulatus is influenced by a saturation deficit.


Author(s):  
J. Schachtschneider ◽  
C. Brenner

Abstract. The development of automated and autonomous vehicles requires highly accurate long-term maps of the environment. Urban areas contain a large number of dynamic objects which change over time. Since a permanent observation of the environment is impossible and there will always be a first time visit of an unknown or changed area, a map of an urban environment needs to model such dynamics.In this work, we use LiDAR point clouds from a large long term measurement campaign to investigate temporal changes. The data set was recorded along a 20 km route in Hannover, Germany with a Mobile Mapping System over a period of one year in bi-weekly measurements. The data set covers a variety of different urban objects and areas, weather conditions and seasons. Based on this data set, we show how scene and seasonal effects influence the measurement likelihood, and that multi-temporal maps lead to the best positioning results.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Joan Frédéric Rey ◽  
Stéphane Goyette ◽  
Mauro Gandolla ◽  
Martha Palacios ◽  
Fabio Barazza ◽  
...  

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Hoffmann ◽  
Jascha Lehmann ◽  
Bijan H. Fallah ◽  
Fred F. Hattermann

AbstractRecent studies have shown that hydro-climatic extremes have increased significantly in number and intensity in the last decades. In the Northern Hemisphere such events were often associated with long lasting persistent weather patterns. In 2018, hot and dry conditions prevailed for several months over Central Europe leading to record-breaking temperatures and severe harvest losses. The underlying circulation processes are still not fully understood and there is a need for improved methodologies to detect and quantify persistent weather conditions. Here, we propose a new method to detect, compare and quantify persistence through atmosphere similarity patterns by applying established image recognition methods to day to day atmospheric fields. We find that persistent weather patterns have increased in number and intensity over the last decades in Northern Hemisphere mid-latitude summer, link this to hydro-climatic risks and evaluate the extreme summers of 2010 (Russian heat wave) and of 2018 (European drought). We further evaluate the ability of climate models to reproduce long-term trend patterns of weather persistence and the result is a notable discrepancy to observed developments.


2016 ◽  
Vol 69 (2) ◽  
Author(s):  
David Paul Belesky ◽  
Dariusz Piotr Malinowski

Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO<span><sub>2</sub></span>. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.


Sign in / Sign up

Export Citation Format

Share Document