A large-scale trial of a one-to-one intervention designed to improve the working memory and numeracy skills of 7 – 8 year-old children who show low attainment in arithmetic

2021 ◽  
Author(s):  
Elena Rosa Brown
2018 ◽  
Vol 61 (5) ◽  
pp. 1294-1305 ◽  
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Natalie J. Benafield

Purpose We examined the association between speech perception in noise (SPIN), language abilities, and working memory (WM) capacity in school-age children. Existing studies supporting the Ease of Language Understanding (ELU) model suggest that WM capacity plays a significant role in adverse listening situations. Method Eighty-three children between the ages of 7 to 11 years participated. The sample represented a continuum of individual differences in attention, memory, and language abilities. All children had normal-range hearing and normal-range nonverbal IQ. Children completed the Bamford–Kowal–Bench Speech-in-Noise Test (BKB-SIN; Etymotic Research, 2005), a selective auditory attention task, and multiple measures of language and WM. Results Partial correlations (controlling for age) showed significant positive associations among attention, memory, and language measures. However, BKB-SIN did not correlate significantly with any of the other measures. Principal component analysis revealed a distinct WM factor and a distinct language factor. BKB-SIN loaded robustly as a distinct 3rd factor with minimal secondary loading from sentence recall and short-term memory. Nonverbal IQ loaded as a 4th factor. Conclusions Results did not support an association between SPIN and WM capacity in children. However, in this study, a single SPIN measure was used. Future studies using multiple SPIN measures are warranted. Evidence from the current study supports the use of BKB-SIN as clinical measure of speech perception ability because it was not influenced by variation in children's language and memory abilities. More large-scale studies in school-age children are needed to replicate the proposed role played by WM in adverse listening situations.


2019 ◽  
Vol 30 (5) ◽  
pp. 3116-3129 ◽  
Author(s):  
Nadine Wanke ◽  
Lars Schwabe

Abstract Lack of control over significant events may induce a state of learned helplessness that is characterized by cognitive, motivational, and affective deficits. Although highly relevant in the pathogenesis of several mental disorders, the extent of the cognitive deficits induced by experiences of uncontrollability and the neural mechanisms underlying such deficits in humans remain poorly understood. Using functional magnetic resonance imaging (fMRI), we tested here whether uncontrollability over aversive events impairs subsequent working memory performance and, if so, which neural processes are involved in such deficits. We assessed working memory and the involved neurocircuitry in the MRI scanner before and after participants underwent a task in which they could either learn to avoid electric shocks or had no instrumental control over shocks. Our results show that subjective, but not objective, uncontrollability over aversive events impaired working memory performance. This impact of subjective uncontrollability was linked to altered prefrontal and parahippocampal activities and connectivity as well as decreased crosstalk between frontoparietal executive and salience networks. Our findings show that the perceived uncontrollability over aversive events, rather than the aversive events themselves or the actual, objective control over them, disrupts subsequent working memory processes, most likely through altered crosstalk between prefrontal, temporal, and parietal areas.


2019 ◽  
Author(s):  
Evgeniia Diachek ◽  
Idan Blank ◽  
Matthew Siegelman ◽  
Josef Affourtit ◽  
Evelina Fedorenko

AbstractAside from the language-selective left-lateralized fronto-temporal network, language comprehension sometimes additionally recruits a domain-general bilateral fronto-parietal network implicated in executive functions: the multiple demand (MD) network. However, the nature of the MD network’s contributions to language comprehension remains debated. To illuminate the role of this network in language processing, we conducted a large-scale fMRI investigation using data from 30 diverse word and sentence comprehension experiments (481 unique participants, 678 scanning sessions). In line with prior findings, the MD network was active during many language tasks. Moreover, similar to the language-selective network, which is robustly lateralized to the left hemisphere, these responses were stronger in the left-hemisphere MD regions. However, in stark contrast with the language-selective network, the MD network responded more strongly (i) to lists of unconnected words than to sentences, and critically, (ii) in paradigms with an explicit task compared to passive comprehension paradigms. In fact, many passive comprehension tasks failed to elicit a response above the fixation baseline in the MD network, in contrast to strong responses in the language-selective network. In tandem, these results argue against a role for the MD network in core aspects of sentence comprehension like inhibiting irrelevant meanings or parses, keeping intermediate representations active in working memory, or predicting upcoming words or structures. These results align with recent evidence of relatively poor tracking of the linguistic signal by the MD regions during naturalistic comprehension, and instead suggest that the MD network’s engagement during language processing likely reflects effort associated with extraneous task demands.Significance StatementDomain-general executive processes, like working memory and cognitive control, have long been implicated in language comprehension, including in neuroimaging studies that have reported activation in domain-general multiple demand (MD) regions for linguistic manipulations. However, much prior evidence has come from paradigms where language interpretation is accompanied by extraneous tasks. Using a large fMRI dataset (30 experiments/481 participants/678 sessions), we demonstrate that MD regions are engaged during language comprehension in the presence of task demands, but not during passive reading/listening—conditions that strongly activate the fronto-temporal language network. These results present a fundamental challenge to proposals whereby linguistic computations, like inhibiting irrelevant meanings, keeping representations active in working memory, or predicting upcoming elements, draw on domain-general executive resources.


2020 ◽  
Author(s):  
Jason S. Tsukahara ◽  
Randall W Engle

We found that individual differences in baseline pupil size correlated with fluid intelligence and working memory capacity. Larger pupil size was associated with higher cognitive ability. However, other researchers have not been able to replicate our 2016 finding – though they only measured working memory capacity and not fluid intelligence. In a reanalysis of Tsukahara et al. (2016) we show that reduced variability on baseline pupil size will result in a higher probability of obtaining smaller and non-significant correlations with working memory capacity. In two large-scale studies, we demonstrated that reduced variability in baseline pupil size values was due to the monitor being too bright. Additionally, fluid intelligence and working memory capacity did correlate with baseline pupil size except in the brightest lighting conditions. Overall, our findings demonstrated that the baseline pupil size – working memory capacity relationship was not as strong or robust as that with fluid intelligence. Our findings have strong methodological implications for researchers investigating individual differences in task-free or task-evoked pupil size. We conclude that fluid intelligence does correlate with baseline pupil size and that this is related to the functional organization of the resting-state brain through the locus coeruleus-norepinephrine system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Noemi Faedda ◽  
Cecilia Guariglia ◽  
Laura Piccardi ◽  
Giulia Natalucci ◽  
Serena Rossetti ◽  
...  

Background: Topographic memory is the ability to reach various places by recognizing spatial layouts and getting oriented in familiar environments. It involves several different cognitive abilities, in particular executive functions (EF), such as attention, working memory, and planning. Children with attention deficit hyperactivity disorder (ADHD) show impairments in inhibitory control, regulation of attention, planning, and working memory.Aim: The aim of this study was to evaluate the topographic memory in children with ADHD-combined subtype (ADHD-C).Method: Fifteen children (8–10 years) with a diagnosis of ADHD-C (DSM-5) (ADHD-C group) were compared to 15 children with typical development (TD group) of the same age. All children performed Raven's colored progressive matrices (CPM) test to obtain a measure related with cognitive functioning. The walking Corsi test (WalCT), a large-scale version of the Corsi block-tapping test, was used to assess topographic memory in experimental environment.Results: A higher impairment was observed in ADHD-C than TD with significant differences in the WalCT, in particular on the topographic short-term memory (TSTM) task, on the topographic learning (TL) task, and on the repetition number (RN) task during the TL task. Perseverative errors were reported in performing the square-sequence in the WalCT. Zero-order correlations showed a positive correlation between TSTM and auditory attention, and memory of design of NEPSY-II and digit span of WISC-IV. No statistically significant differences were found between the ADHD-C group and TD group in the TL task in the WalCT condition.Conclusion: In ADHD-C, initial topographic learning was compromised whereas the long-term retention of learned topographical material seemed to not be impaired. In particular, these impairments seem to be linked with difficulties in sustained attention, in spatial memory for novel visual materials, in a poor working memory, and in perseverative behaviors.


2021 ◽  
Vol 14 ◽  
Author(s):  
Olivia N. Arski ◽  
Julia M. Young ◽  
Mary-Lou Smith ◽  
George M. Ibrahim

Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.


2006 ◽  
Vol 18 (2) ◽  
pp. 242-257 ◽  
Author(s):  
George L. Chadderdon ◽  
Olaf Sporns

The prefrontal cortex (PFC) is crucially involved in the executive component of working memory, representation of task state, and behavior selection. This article presents a large-scale computational model of the PFC and associated brain regions designed to investigate the mechanisms by which working memory and task state interact to select adaptive behaviors from a behavioral repertoire. The model consists of multiple brain regions containing neuronal populations with realistic physiological and anatomical properties, including extrastriate visual cortical regions, the inferotemporal cortex, the PFC, the striatum, and midbrain dopamine (DA) neurons. The onset of a delayed match-to-sample or delayed nonmatch-to-sample task triggers tonic DA release in the PFC causing a switch into a persistent, stimulus-insensitive dynamic state that promotes the maintenance of stimulus representations within prefrontal networks. Other modeled prefrontal and striatal units select cognitive acceptance or rejection behaviors according to which task is active and whether prefrontal working memory representations match the current stimulus. Working memory task performance and memory fields of prefrontal delay units are degraded by extreme elevation or depletion of tonic DA levels. Analyses of cellular and synaptic activity suggest that hyponormal DA levels result in increased prefrontal activation, whereas hypernormal DA levels lead to decreased activation. Our simulation results suggest a range of predictions for behavioral, single-cell, and neuroimaging response data under the proposed task set and under manipulations of DA concentration.


2014 ◽  
Vol 204 (4) ◽  
pp. 290-298 ◽  
Author(s):  
Christine Lycke Brandt ◽  
Tom Eichele ◽  
Ingrid Melle ◽  
Kjetil Sundet ◽  
Andrés Server ◽  
...  

BackgroundSchizophrenia and bipolar disorder are severe mental disorders with overlapping genetic and clinical characteristics, including cognitive impairments. An important question is whether these disorders also have overlapping neuronal deficits.AimsTo determine whether large-scale brain networks associated with working memory, as measured with functional magnetic resonance imaging (fMRI), are the same in both schizophrenia and bipolar disorder, and how they differ from those in healthy individuals.MethodPatients with schizophrenia (n = 100) and bipolar disorder (n = 100) and a healthy control group (n = 100) performed a 2-back working memory task while fMRI data were acquired. The imaging data were analysed using independent component analysis to extract large-scale networks of task-related activations.ResultsSimilar working memory networks were activated in all groups. However, in three out of nine networks related to the experimental task there was a graded response difference in fMRI signal amplitudes, where patients with schizophrenia showed greater activation than those with bipolar disorder, who in turn showed more activation than healthy controls. Secondary analysis of the patient groups showed that these activation patterns were associated with history of psychosis and current elevated mood in bipolar disorder.ConclusionsThe same brain networks were related to working memory in schizophrenia, bipolar disorder and controls. However, some key networks showed a graded hyperactivation in the two patient groups, in line with a continuum of neuronal abnormalities across psychotic disorders.


2016 ◽  
Vol 46 (6) ◽  
pp. 1211-1224 ◽  
Author(s):  
W. Pu ◽  
Q. Luo ◽  
L. Palaniyappan ◽  
Z. Xue ◽  
S. Yao ◽  
...  

BackgroundA large-scale network named the default mode network (DMN) dynamically cooperates and competes with an external attention system (EAS) to facilitate various cognitive functioning that is prominently impaired in schizophrenia. However, it is unclear whether the cognitive deficit in schizophrenia is related to the disrupted competition and/or cooperation between these two networks.MethodA total of 35 schizophrenia patients and 30 healthy controls were scanned using gradient-echo echo-planar imaging during n-back working memory (WM) processing. Brain activities of the DMN and EAS were measured using general linear modelling of the functional magnetic resonance imaging data. Dynamic interaction between the DMN and EAS was decomposed into two directions using Granger causality analysis.ResultsWe observed a significant failure of DMN suppression in patients with schizophrenia, which was significantly related to WM/attentional deficit. Granger causality modelling showed that in healthy controls, while the EAS inhibitorily influenced the DMN, the DMN exerted an ‘excitatory’ or cooperative influence back on the EAS, especially in those with lower WM accuracy. In schizophrenia, this ‘excitatory’ DMN→EAS influence within the reciprocal EAS–DMN loop was significantly reduced, especially in patients with WM/attentional deficit.ConclusionsThe dynamic interaction between the DMN and EAS is likely to be comprised of both competitive and cooperative influences. In healthy controls, both the ‘inhibitory’ EAS→DMN interaction and ‘excitatory’ DMN→EAS interaction are correlated with WM performance. In schizophrenia, reduced ‘cooperative’ influence from the DMN to dorsal nodes of the EAS occurs in the context of non-suppression of the DMN and may form a possible pathophysiological substrate of WM deficit and attention disorder.


Sign in / Sign up

Export Citation Format

Share Document