scholarly journals Acoustics Based Monitoring and Diagnostics for the Progressive Deterioration of Helical Gearboxes

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Kaibo Lu ◽  
James Xi Gu ◽  
Hongwei Fan ◽  
Xiuquan Sun ◽  
Bing Li ◽  
...  

AbstractGearbox condition monitoring (CM) plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters. Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions, avoid excessive energy consumption and prevent avoidable damages to systems. This study focuses on developing CM for a multi-stage helical gearbox using airborne sound. Based on signal phase alignments, Modulation Signal Bispectrum (MSB) analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics. MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration. A run-to-failure test of two industrial gearboxes was tested under various loading conditions. Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation. It has been shown that compared against vibration based CM, acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear. Also, the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission. Consequently, the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics, allowing the gradual deterioration process and gear wear location to be represented more consistently.

1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


1992 ◽  
Vol 336 (1278) ◽  
pp. 375-382 ◽  

A complex tone often evokes a pitch sensation associated with its extreme spectral components, besides the holistic pitch associated with its fundamental frequency. We studied the edge pitch created at the upper spectral edge of complexes with a low-pass spectrum by asking subjects to adjust the frequency of a sinusoidal comparison tone to the perceived pitch. Measurements were performed for different values of the fundamental frequency and of the upper frequency of the complex as well as for three different phase relations of the harmonic components. For a wide range of these parameters the subjects could adjust the comparison tone with a high accuracy, measured as the standard deviation of repeated adjustments, to a frequency close to the nominal edge frequency. The detailed dependence of the matching accuracy on temporal parameters of the harmonic complexes suggests that the perception of the edge pitch in harmonic signals is related to the temporal resolution of the hearing system. This resolution depends primarily on the time constants of basilar-membrane filters and on additional limitations due to neuronal processes.


2004 ◽  
Vol 126 (3) ◽  
pp. 473-481 ◽  
Author(s):  
B. Jacod ◽  
C. H. Venner ◽  
P. M. Lugt

The effect of longitudinal roughness on the friction in EHL contacts is investigated by means of numerical simulations. In the theoretical model the Eyring equation is used to describe the rheological behavior of the lubricant. First the relative friction variation caused by a single harmonic roughness component is computed as a function of the amplitude and wavelength for a wide range of operating conditions. From the results a curve fit formula is derived for the relative friction variation as a function of the out-of-contact geometry of the waviness and a newly derived parameter characterizing the response of the lubricant to pressure variations. Subsequently, the case of a superposition of two harmonic components is considered. It is shown that for the effect on friction such a combined pattern can be represented by a single equivalent wave. The amplitude and the wavelength of the equivalent wave can be determined from a nonlinear relation in terms of the amplitudes and wavelengths of the individual harmonic components. Finally the approach is applied to the prediction of the effect of a real roughness profile (many components) on the friction. From a comparison of the results with full numerical simulations it appears that the simplified approach is quite accurate.


2016 ◽  
Vol 6 (2) ◽  
pp. 71
Author(s):  
Aouyporn Suphasawat ◽  
Sirichai Hongsanguansri ◽  
Patcharin Seree ◽  
Ouaychai Rotjananirunkit

<p>The purpose of this study is to investigate the relationship between internet usage behavior and academic achievement among elementary school students from grade 4-6 in Bangkok. The researcher employed Multi-stage Sampling to recruit 297 samples. The data was gathered via the following tests: 1) Intelligence tests, namely Colored Progressive Matrices (CPM) for students aged 5-11 year old or Standard Progressive Matrices (SPM) for 12 year old and above, and 2) Academic achievement test, namely Wide Range Achievement Test Thai Edition: WRAT-Thai. The findings revealed that time spent on the internet is negatively correlated to student’s reading achievement (r = -.24, p &lt; .001), spelling achievement (r = -.26, p &lt; .001), and math achievement (r = -.20, p = .001). More surprisingly, academic related internet usage was also found to be negatively correlated to math achievement (r = -.20, p &lt; 0.05). Meanwhile, internet usage for social media has a correlation with academic achievement in math and reading, (r = -.20, p = .001) and (r = -.13, p &lt; .05), respectively. Moreover, internet usage for entertainment was found to have a negative correlation with academic achievement in reading, spelling and math, (r = -.25, p &lt; .001), (r = -.27, p &lt; .001) and (r = -.21, p &lt; .001), respectively. Internet usage for online business, however, yielded no correlation to academic achievement. The study concluded that daily internet usage does have an effect on academic achievement in math. Moreover, when used for entertainment and social media, internet usage can pose a negative effect on academic achievement in reading and writing.</p>


2021 ◽  
Vol 345 ◽  
pp. 00027
Author(s):  
Václav Sláma ◽  
David Šimurda ◽  
Lukáš Mrózek ◽  
Ladislav Tajč ◽  
Jindřich Hála ◽  
...  

Characteristics of a new compact valve design for steam turbines are analysed by measuring pressure losses and oscillations on the valve model. It is the model of an intercept valve of the intermediate-pressure turbine part. This valve is relatively smaller hence cheaper than usual control and intercept valves. Besides, four different valve seat angles were tested in order to investigate the valve seat angle influence. In order to further clarify measured phenomena, the wide range of numerical simulations were also carried out. Measurements were performed in the Aerodynamic laboratory of the Institute of Thermomechanics of the Czech Academy of Sciences in an air test rig installed in a modular aerodynamic tunnel. Numerical simulations were performed in the Doosan Skoda Power Company using a package of ANSYS software tools. Measurement results are compared with numerical and generalized in the form of valve characteristics and pressure oscillation maps. As a result of the pressure loss analysis, pressure losses in similar valve assemblies can be predicted with required accuracy for each new turbine where modern compact valves are used. As a result of the pressure oscillation analysis, operating conditions at which dangerous flow instabilities can occur were identified. Thanks to this, the areas of safe and dangerous operating conditions can be predicted so that the operational reliability of the valve can be guaranteed.


1999 ◽  
Author(s):  
R. Tang ◽  
M. A. Rosen

Abstract The thermodynamic effects are demonstrated of integrating steam turbine-based cogeneration systems with absorption chillers. A wide range of realistic extraction steam pressures and coefficient of performance (COP) values of absorption chillers are considered. A simple model of a steam turbine-based cogeneration plant is used for the evaluation of the integrated system. The integrated systems are evaluated based on the ratio of fuel consumption between a base case (one-stage absorption chiller with a COP value of 0.6) and several alternative cases (multi-stage absorption chillers with COP values ranging from 0.6 to 1.5). Two categories of scenarios are considered: (i) cases where the cooling load is fixed; and (ii) cases where the cooling load is fixed and the electrical output for the integrated system is set equal to that for the base case.


Author(s):  
Alexandra Rodkina ◽  
Marian Wiercigroch

Abstract The dynamics of a nonlinear cutting process in the presence of random noise is defined and investigated. This approach is adequate for a wide range of models describing the orthogonal metal cutting processes by a single-degree-of-freedom oscillator, where the nonlinearity comes from the cutting force in form of a variable resistance force. The method of Lyapunov–Krasovskii functional was adopted to analyze the necessary conditions for a stable operation. The conditions ensuring an asymptotic stability in the presence of random noises are established.


2019 ◽  
Vol 10 (1) ◽  
pp. 73 ◽  
Author(s):  
Einar Agletdinov ◽  
Dmitry Merson ◽  
Alexei Vinogradov

A novel methodology is proposed to enhance the reliability of detection of low amplitude transients in a noisy time series. Such time series often arise in a wide range of practical situations where different sensors are used for condition monitoring of mechanical systems, integrity assessment of industrial facilities and/or microseismicity studies. In all these cases, the early and reliable detection of possible damage is of paramount importance and is practically limited by detectability of transient signals on the background of random noise. The proposed triggering algorithm is based on a logarithmic derivative of the power spectral density function. It was tested on the synthetic data, which mimics the actual ultrasonic acoustic emission signal recorded continuously with different signal-to-noise ratios (SNR). Considerable advantages of the proposed method over established fixed amplitude threshold and STA/LTA (Short Time Average / Long Time Average) techniques are demonstrated in comparative tests.


2020 ◽  
Vol 7 (2) ◽  
pp. 192011
Author(s):  
Leonie Färber ◽  
Rob van Gemert ◽  
Øystein Langangen ◽  
Joël M. Durant ◽  
Ken H. Andersen

The recruitment and biomass of a fish stock are influenced by their environmental conditions and anthropogenic pressures such as fishing. The variability in the environment often translates into fluctuations in recruitment, which then propagate throughout the stock biomass. In order to manage fish stocks sustainably, it is necessary to understand their dynamics. Here, we systematically explore the dynamics and sensitivity of fish stock recruitment and biomass to environmental noise. Using an age-structured and trait-based model, we explore random noise (white noise) and autocorrelated noise (red noise) in combination with low to high levels of harvesting. We determine the vital rates of stocks covering a wide range of possible body mass (size) growth rates and asymptotic size parameter combinations. Our study indicates that the variability of stock recruitment and biomass are probably correlated with the stock's asymptotic size and growth rate. We find that fast-growing and large-sized fish stocks are likely to be less vulnerable to disturbances than slow-growing and small-sized fish stocks. We show how the natural variability in fish stocks is amplified by fishing, not just for one stock but for a broad range of fish life histories.


1975 ◽  
Vol 15 (1) ◽  
pp. 81
Author(s):  
W. Pailthorpe ◽  
J. Wardell

During the past two years, much publicity has been given to the direct indication of hydrocarbon accumulations by "Bright Spot" reflections: the very high amplitude reflections from a shale to gas-sand or gas-sand to water-sand interface. It was soon generally realised, however, that this phenomenon was of limited occurrence, being mostly restricted to young, shallow, sand and shale sequences such as the United States Gulf Coast. A more widely detectable indication of hydrocarbons was found to be the reflection from a fluid interface, such as the gas to water interface, within the reservoir. This reflection is characterised by its flatness, being a fluid interface, and is often called the "Flat Spot".Model studies show that the flat spots have a wide range of amplitudes, from very high for shallow gas to water contacts, to very low for deep oil to water contacts. However, many of the weaker flat spots on good recent marine seismic data have an adequate signal to random noise ratio for detection, and the problem is to separate and distinguish them from the other stronger reflections close by. In this respect the unique flatness of the fluid contact reflection can be exploited by dip discriminant processes, such as velocity filtering, to separate it from the generally dipping reflectors at its boundaries. A limiting factor in the detection of the deeper flat spots is the frequency bandwidth of the seismic data. Since the separation between the flat spot reflection and the upper and lower boundary reflections of the reservoir is often small, relatively high frequency data are needed to resolve these separate reflections. Correct display of the seismic data can be critical to flat spot detection, and some degree of vertical exaggeration of the seismic section is often required to increase apparent dips, and thus make the flat spots more noticeable.The flat spot is generally a smaller target than the structural features that conventional seismic surveys are designed to find and map, and so a denser than normal grid of seismic lines is required adequately to map most flat spots.


Sign in / Sign up

Export Citation Format

Share Document