scholarly journals Investigation on the Flow Behavior of Side Channel Pumps Based on Vortex Identification

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Fan Zhang ◽  
Desmond Appiah ◽  
Ke Chen ◽  
Shouqi Yuan ◽  
Kofi Asamoah Adu-Poku ◽  
...  

AbstractThe momentum flow exchange between the impeller and side channel produces highly turbulent flows in side channel pumps. The turbulent flows feature complex patterns of vortex structures that are partly responsible for the dissipation of energy losses and unsteady pressure pulsations. The concept of turbulent flows in side channel pumps requires a reliable vortex identification criterion to capture and predict the effects of the vortex structures on the performance. For this reason, the current study presents the application of the new Ω-criterion to a side channel pump model in comparison with other traditional methods such as Q and λ2 criteria. The 3D flow fields of the pump were obtained through unsteady Reynolds-averaged Navier-Stokes (RANS) simulations. Comparative studies showed that the Ω-criterion identifies the vortex of different intensities with a standard threshold, Ω=0.52. The Q and λ2 criteria required different thresholds to capture vortex of different intensities thus leads to subjective errors. Comparing the Ω-criterion intensity on different planes with the entropy losses and pressure pulsation, the longitudinal vortex plays an important role in the momentum exchange development which increases the head performance of the pump. However, the rate of exchange is impeded by the axial and radial vortices restricted in the impeller. Therefore, the impeller generates the highest entropy loss and pressure pulsation intensities which lower the output efficiency. Finally, the findings provide a fundamental background to the morphology of the vortex structures in the turbulent flows which can be dependent upon for efficiency improvement of side channel pumps.

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Fan Zhang ◽  
Desmond Appiah ◽  
Ke Chen ◽  
Shouqi Yuan ◽  
Kofi Asamoah Adu-Poku ◽  
...  

Abstract To obtain a better insight into the unsteady flow behavior in side channel pumps by a robust vortex identification method, this study presents the efficacy of the new Ω-criterion in characterizing the evolution of vortex structures in the turbulent flows under different time steps. The flow behavior and the underlying vorticity dynamics were revealed as well. Compared to Q-criterion, the new Ω-criterion identified all vortex structures irrespective of the intensity at a universal threshold of 0.52. Three different types of vortex structures (longitudinal, axial, and radial) were identified to be responsible for the turbulent flows in the side channel pumps. The beneficial longitudinal vortex promotes the momentum exchange flow between the impeller and side channel which leads to the high hydraulic head of side channel pumps. On the other hand, the unfavorable axial and radial vortex structures restricted in the impeller passage mitigate the exchange process accounting for the low efficiency of the pumps. From this study, it can be established that the evolution of the axial vortex structures is responsible for the largest vortex distribution in the impeller compared to the total vortex evolved. The impeller outer radius contributes about 60% of the unfavorable axial structures evolved. Using the new Ω-criterion, many reported anomalous findings have been explained.


2005 ◽  
Vol 73 (3) ◽  
pp. 405-412 ◽  
Author(s):  
Hermann F. Fasel ◽  
Dominic A. von Terzi ◽  
Richard D. Sandberg

A flow simulation Methodology (FSM) is presented for computing the time-dependent behavior of complex compressible turbulent flows. The development of FSM was initiated in close collaboration with C. Speziale (then at Boston University). The objective of FSM is to provide the proper amount of turbulence modeling for the unresolved scales while directly computing the largest scales. The strategy is implemented by using state-of-the-art turbulence models (as developed for Reynolds averaged Navier-Stokes (RANS)) and scaling of the model terms with a “contribution function.” The contribution function is dependent on the local and instantaneous “physical” resolution in the computation. This physical resolution is determined during the actual simulation by comparing the size of the smallest relevant scales to the local grid size used in the computation. The contribution function is designed such that it provides no modeling if the computation is locally well resolved so that it approaches direct numerical simulations (DNS) in the fine-grid limit and such that it provides modeling of all scales in the coarse-grid limit and thus approaches a RANS calculation. In between these resolution limits, the contribution function adjusts the necessary modeling for the unresolved scales while the larger (resolved) scales are computed as in large eddy simulation (LES). However, FSM is distinctly different from LES in that it allows for a consistent transition between RANS, LES, and DNS within the same simulation depending on the local flow behavior and “physical” resolution. As a consequence, FSM should require considerably fewer grid points for a given calculation than would be necessary for a LES. This conjecture is substantiated by employing FSM to calculate the flow over a backward-facing step and a plane wake behind a bluff body, both at low Mach number, and supersonic axisymmetric wakes. These examples were chosen such that they expose, on the one hand, the inherent difficulties of simulating (physically) complex flows, and, on the other hand, demonstrate the potential of the FSM approach for simulations of turbulent compressible flows for complex geometries.


Author(s):  
Amir Nejat ◽  
Farshad Kowsary ◽  
Amin Hasanzadeh ◽  
Saman Ebrahimi

This paper investigates the unsteady characteristics of flow in a specific type of microvalve with sudden expansion shape. The geometry of the channel is such that the flow resistance caused by vortex structures is different in forward and backward flow directions. This introduces the geometry as a good nominee as a microfluidic rectifier with application in micropump systems and MEMS-based devices. A time-varying sinusoidal pressure was set at the inlet of the microchannel to produce unsteadiness and simulate the pumping action. The existence of block obstacle and expansion shoulders leads to various sizes of vortex structures in each flow direction. All simulation results are based on the numerical simulation of two-dimensional, unsteady, incompressible and laminar Navier-Stokes equations using finite element algorithm. Two fundamental parameters are varied to investigate the vortices growth throughout the time: the frequency of the inlet actuating mechanism and the amplitude of the inlet pressure. The frequency of the inlet pressure was varied in the range of 1 Hz to 1000 Hz to cover the frequency range in many micropump applications. In this way, one can see the effect of actuation mechanism on onset of separation and follow the size and duration of the vortex growth. In order to better understand the effect of geometry and frequency on flow field, the pressure contours are studied through one cycle. Finally, Strouhal number is calculated for frequency to obtain a measure of unsteadiness of the flow. A critical value of f = 250Hz is found for St = 1. The obtained results give a deep insight into the physics of unsteady flow in valveless microvalves and lead to better use of current design as a part of microfluidic system.


Author(s):  
P. Chakraborty ◽  
S. Balachandar ◽  
R. J. Adrian

Vortices, the regions of swirling coherent motion of fluid, are of fundamental importance in understanding the dynamics of turbulent flows. Recent advances in computational and experimental resources have resulted in massive volumes of highly resolved flow field data. Identification of coherent vortex structures from these space-time discretized flow dataset is the key issue of vortex identification. We consider identification schemes based on pointwise analysis of the velocity gradient tensor. A new measure of the local spatial coherence in a vortex is introduced. Different criteria are compared for two classes of turbulent flows: isotropic and sphere wake. Remarkably similar vortex structures are observed using the Q, λ2 and swirling strength criterion. An explanation based on swirling strength and the proposed local coherence measure is offered for this observation.


Author(s):  
Zhiyi Yuan ◽  
Yongxue Zhang ◽  
Cong Wang ◽  
Bohui Lu

The development of flow control methods in the centrifugal pump relies on further understanding of the characteristics of vortex structures and their irreversible losses. In this paper, the detached eddy simulation is conducted on a model centrifugal pump, which shows a good agreement with the experiment. Combining with three generations of vortex identification methods (vorticity, Q criterion, omega and Liutex methods) and entropy production analysis, the results show omega and Liutex methods are highly recommended to analyze the vortex structures. Vorticity is the key factor to promote the energy dissipation, and the irreversible losses of vortex areas can be lower than their surroundings when there exists smaller vorticity or higher rotation strength. Concerning the pressure pulsation induced by vortex shedding, it is unreasonable to analyze this unsteady process via vortex structures identified by iso-surface because of the restriction of the threshold. In comparison, the change of integral length is more related to the pressure pulsation.


Author(s):  
Sauro Succi

This chapter introduces the main ideas behind the application of LBE methods to the problem of turbulence modeling, namely the simulation of flows which contain scales of motion too small to be resolved on present-day and foreseeable future computers. Many real-life flows of practical interest exhibit Reynolds numbers far too high to be directly simulated in full resolution on present-day computers and arguably for many years to come. This raises the challenge of predicting the behavior of highly turbulent flows without directly simulating all scales of motion which take part to turbulence dynamics, but only those that fall within the computer resolution at hand.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2011 ◽  
Vol 21 (03) ◽  
pp. 421-457 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
MARIUS PAICU

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions à la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.


1994 ◽  
Vol 47 (6S) ◽  
pp. S3-S13 ◽  
Author(s):  
Parviz Moin ◽  
Thomas Bewley

A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the Navier-Stokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document