scholarly journals Nanoindentation Characterization of Creep-fatigue Interaction on Local Creep Behavior of P92 Steel Welded Joint

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yuxuan Song ◽  
Yi Ma ◽  
Zhouxin Pan ◽  
Yuebing Li ◽  
Taihua Zhang ◽  
...  

AbstractIn modern fossil and nuclear power plants, the components are subjected to creep, fatigue, and creep-fatigue (CF) due to frequent start-up and shut-down operations at high temperatures. The CF interaction on the in-service P92 steel welded joint was investigated by strain-controlled CF tests with different dwell times of 30, 120, 300, 600 and 900 s at 650 °C. Based on the observations of the fracture surface by scanning electron microscope (SEM), the characteristic microstructure of fatigue-induced damage was found for the CF specimens with short dwell times (30 and 120 s). The hardness, elastic modulus and creep deformation near the fracture edges of four typical CF specimens with 30, 120, 600 and 900 s dwell times were measured by nanoindentation. Compared to specimens with post-weld heat treatment (PWHT), lower hardness and creep strength were found for all CF specimens. In addition, significant reductions in hardness, elastic modulus, and creep strength were measured near the fracture edges for the CF specimens with short dwell times compared to the PWHT specimens. Compared to PWHT specimens (0.007), the increased strain rate sensitivities (SRS) of 0.010 to 0.17 were estimated from secondary creep. The increased values of SRS indicate that the room temperature creeps behavior is strongly affected by the decrease in dislocation density after the CF tests.

2016 ◽  
Vol 713 ◽  
pp. 183-186 ◽  
Author(s):  
Vàclav Sklenička ◽  
K. Kuchařová ◽  
M. Kvapilová ◽  
Petr Král ◽  
Jiří Dvořák

Advanced tungsten modified 9%Cr ferritic steel (ASTM Grade P92) is a promising material for the next generation of fossil and nuclear power plants. Unfortunately, there are rather few published reports on damage processes in P92 steel during high temperature creep and the effect of damage evolution on the creep strength is not fully understood. In this work, the creep behaviour of P92 steel in as-received condition and after long-term isothermal ageing was investigated at 600 and 650°C using uniaxial tension creep tests. To quantify the effect of each damage process on the loss of creep strength, most of creep tests were followed by microstructural and fractographic investigations. It was found that the large Laves phase particles, which coarsened during creep exposure, served as preferential sites for creep cavity nucleation.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Roberto Pellacani Monteiro ◽  
Aluísio Souza Reis Junior ◽  
Geraldo Frederico Kastner ◽  
Eliane Silvia Codo Temba ◽  
Thiago César De Oliveira ◽  
...  

The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants.  In this program  some radionuclides, 3H, 14C, 55Fe, 59Ni, 63Ni, 90Sr, 93Zr, 94Nb, 99Tc, 129I, 235U, 238U, 238Pu, 239+240Pu, 241Pu, 242Pu, 241Am, 242Cm e 243+244Cm, were determined  in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was stablished.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 222 ◽  
Author(s):  
Magdalena Jaremkiewicz ◽  
Dawid Taler ◽  
Piotr Dzierwa ◽  
Jan Taler

In both conventional and nuclear power plants, the high thermal load of thick-walled elements occurs during start-up and shutdown. Therefore, thermal stresses should be determined on-line during plant start-up to avoid shortening the lifetime of critical pressure elements. It is necessary to know the fluid temperature and heat transfer coefficient on the internal surface of the elements, which vary over time to determine transient temperature distribution and thermal stresses in boilers critical pressure elements. For this reason, accurate measurement of transient fluid temperature is very significant, and the correct determination of transient thermal stresses depends to a large extent on it. However, thermometers used in power plants are not able to measure the transient fluid temperature with adequate accuracy due to their massive housing and high thermal inertia. The article aims to present a new technique of measuring transient superheated steam temperature and the results of its application on a real object.


2021 ◽  
Vol 131 ◽  
pp. 103580
Author(s):  
Luca Pinciroli ◽  
Piero Baraldi ◽  
Ahmed Shokry ◽  
Enrico Zio ◽  
Redouane Seraoui ◽  
...  

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
J. Wang ◽  
G. Z. Wang ◽  
F. Z. Xuan ◽  
S. T. Tu

In this paper, the J-R curves of two cracks (A508 HAZ crack 2 and A508/Alloy52Mb interface crack 3) located at the weakest region in an Alloy52M dissimilar metal welded joint (DMWJ) for connecting pipe-nozzle of nuclear pressure vessel have been measured by using single edge-notched bend (SENB) specimens with different crack depths a/W (different constraint). Based on the modified T-stress constraint parameter τ*, the equations of constraint-dependent J-R curves for the crack 2 and crack 3 were obtained. The predicted J-R curves using different constraint equations derived from the three pairs of crack growth amount all agree with the experimental J-R curves. The results show that the modified T-stress approach for obtaining constraint-dependent J-R curves of homogeneous materials can also be used for the DMWJs with highly heterogeneous mechanical properties (local strength mismatches) in nuclear power plants. The use of the constraint-dependent J-R curves may increase the accuracy of structural integrity design and assessment for the DMWJs of nuclear pressure vessels.


Author(s):  
Yukio Takahashi ◽  
Bilal Dogan ◽  
David Gandy

Failure under creep-fatigue interaction is receiving increasing interest due to an increased number of start-up and shut-down in fossil power generation plants as well as development of newer nuclear power plants employing low-pressure coolant. These situations have promoted the development of various approaches for evaluating its significance. However, most of them are fragment and rather limited in terms of materials and test conditions they covered. Therefore applicability of the proposed approaches to different materials or even different temperatures is uncertain in many cases. The present work was conducted in order to evaluate and compare the representative approaches used in the prediction of failure life under creep-fatigue conditions as well as their modifications, by systematically applying them to available test data on a wide range of materials which have been used or are planned to be used in various types of power generation plants. The following observations have been made from this exercise. (i) Time fraction model has a tendency to be unconservative in general, especially at low temperature and small strain range. Because of the large scatter of the total damage, this shortcoming would be difficult to cover by the consideration of creep-fatigue interaction in a fixed manner. (ii) Classical ductility exhaustion model showed a common tendency to be overly conservative in many situations, especially at small strain ranges. (iii) The modified ductility exhaustion model based on the re-definition of creep damage showed improved predictability with a slightly unconservative tendency. (iv) Energy-based ductility exhaustion model developed in this study seems to show the best predictability among the four procedures in an overall sense although some dependency on strain range and materials was observed.


Author(s):  
Wei Tang ◽  
Maxim Gussev ◽  
Zhili Feng ◽  
Brian Gibson ◽  
Roger Miller ◽  
...  

Abstract The mitigation of helium induced cracking in the heat affected zone (HAZ), a transition metallurgical zone between the weld zone and base metal, during repair welding is a great challenge in nuclear industry. Successful traditional fusion welding repairs are limited to metals with a maximum of a couple of atomic parts per million (appm) helium, and structural materials helium levels in operating nuclear power plants are generally exceed a couple of appm after years of operations. Therefore, fusion welding is very limited in nuclear power plants structural materials repairing. Friction stir welding (FSW) is a solid-state joining technology that reduces the drivers (temperature and tensile residual stress) for helium-induced cracking. This paper will detail initial procedural development of FSW weld trials on irradiated 304L stainless steel (304L SS) coupons utilizing a unique welding facility located at one of Oak Ridge National Laboratory’s hot cell facilities. The successful early results of FSW of an irradiated 304L SS coupon containing high helium are discussed. Helium induced cracking was not observed by scanning electron microscopy in the friction stir weld zone and the metallurgical zones between the weld zone and base metal, i.e. thermal mechanical affected zone (TMAZ) and HAZ. Characterization of the weld, TMAZ and HAZ regions are detailed in this paper.


2021 ◽  
Vol 11 (21) ◽  
pp. 9983
Author(s):  
Yuebing Li ◽  
Yuxuan Song ◽  
Pan Liu ◽  
Ting Jin

To understand the premature-fracture mechanisms of long-term service damage of an advanced alloy’s (Chinese P92 steel) welded joint, the creep-fatigue (CF) experiments with holding times of 30, 120, 300, 600 and 900 s were individually performed at 923 K. The cyclic softening, inelastic-strain amplitudes and stress-relaxation behaviors were compared between welded and base-metal (BM) specimens. From the results, the failure stage of the welded specimens occupies 45% of the lifetime fraction, while it only takes up 20% of the lifetime fraction in BM specimens with short holding times (30 and 120 s). Furthermore, only two softening stages were observed for both kinds of CF specimens with long holding times. The absence of a third softening stage in longer-held specimens indicates that the processes of macroscopic-crack initiation, propagation and rupture were accelerated. Based on the observation of the fracture surfaces, the fracture mechanism shifted from fatigue-dominated damage to creep-fatigue interaction when the holding period was increased.


Sign in / Sign up

Export Citation Format

Share Document