scholarly journals The functions and roles of sestrins in regulating human diseases

2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Yitong Chen ◽  
Tingben Huang ◽  
Zhou Yu ◽  
Qiong Yu ◽  
Ying Wang ◽  
...  

AbstractSestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Marco Cordani ◽  
Miguel Sánchez-Álvarez ◽  
Raffaele Strippoli ◽  
Alexandr V. Bazhin ◽  
Massimo Donadelli

Reactive oxygen species (ROS) and autophagy are two highly complex and interrelated components of cell physiopathology, but our understanding of their integration and their contribution to cell homeostasis and disease is still limited. Sestrins (SESNs) belong to a family of highly conserved stress-inducible proteins that orchestrate antioxidant and autophagy-regulating functions protecting cells from various noxious stimuli, including DNA damage, oxidative stress, hypoxia, and metabolic stress. They are also relevant modulators of metabolism as positive regulators of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibitors of mammalian target of rapamycin complex 1 (mTORC1). Since perturbations in these pathways are central to multiple disorders, SESNs might constitute potential novel therapeutic targets of broad interest. In this review, we discuss the current understanding of regulatory and effector networks of SESNs, highlighting their significance as potential biomarkers and therapeutic targets for different diseases, such as aging-related diseases, metabolic disorders, neurodegenerative diseases, and cancer.


2010 ◽  
Vol 298 (4) ◽  
pp. E761-E769 ◽  
Author(s):  
Cossette Sanchez Canedo ◽  
Bénédicte Demeulder ◽  
Audrey Ginion ◽  
Jose R. Bayascas ◽  
Jean-Luc Balligand ◽  
...  

Like insulin, leucine stimulates the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) axis in various organs. Insulin proceeds via the canonical association of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB/Akt). The signaling involved in leucine effect, although known to implicate a PI3K mechanism independent of PKB/Akt, is more poorly understood. In this study, we investigated whether PDK1 could also participate in the events leading to mTOR/p70S6K activation in response to leucine in the heart. In wild-type hearts, both leucine and insulin increased p70S6K activity whereas, in contrast to insulin, leucine was unable to activate PKB/Akt. The changes in p70S6K activity induced by insulin and leucine correlated with changes in phosphorylation of Thr389, the mTOR phosphorylation site on p70S6K, and of Ser2448 on mTOR, both related to mTOR activity. Leucine also triggered phosphorylation of the proline-rich Akt/PKB substrate of 40 kDa (PRAS40), a new pivotal mTOR regulator. In PDK1 knockout hearts, leucine, similarly to insulin, failed to induce the phosphorylation of mTOR and p70S6K, leading to the absence of p70S6K activation. The loss of leucine effect in absence of PDK1 correlated with the lack of PRAS40 phosphorylation. Moreover, the introduction in PDK1 of the L155E mutation, which is known to preserve the insulin-induced and PKB/Akt-dependent phosphorylation of mTOR/p70S6K, suppressed all leucine effects, including phosphorylation of mTOR, PRAS40, and p70S6K. We conclude that the leucine-induced stimulation of the cardiac PRAS40/mTOR/p70S6K pathway requires PDK1 in a way that differs from that of insulin.


Biologia ◽  
2017 ◽  
Vol 72 (6) ◽  
Author(s):  
Hyoin Kim ◽  
Dong Hyun Kim ◽  
Bohyeon Jeong ◽  
Ju-Hee Kim ◽  
Sun-Ryung Lee ◽  
...  

AbstractRearrangement of the actin cytoskeleton plays an inductive role in chondrogenic differentiation. Our previous study showed that blebbistatin, an inhibitor of myosin II, removes actin stress fibres and induces chondrogenesis of mesenchymal cells in monolayer cultures. In the present study, we investigated signalling pathways implicated in the induction of chondrogenesis by dissolving actin stress fibres after blebbistatin treatment. Blebbistatin increased the activity of phosphoinositide 3-kinase (PI3K). Inhibition of PI3K with LY294002 blocked blebbistatin-induced chondrogenesis without affecting blebbistatin-induced reorganization of actin filaments. Blebbistatin also upregulated the phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1), and inhibition of PDK1 with GSK2334470 suppressed blebbistatin-induced chondrogenesis, indicating that removal of actin stress fibres by blebbistatin induced chondrogenesis by activating PI3K/PDK1. Although inhibition of Akt activity by Akt inhibitor IV blocked blebbistatin-induced chondrogenesis, phosphorylation of Akt was not affected by blebbistatin. Blebbistatin increased the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and p70 ribosomal protein S6 kinase (p70S6K). Inhibition of mTOR with rapamycin almost completely abolished the phosphorylation of p70S6K. Inhibition of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) with pp242 diminished phosphorylation of Akt at Ser473, whereas inhibition of mTORC1 with rapamycin did not. However, blebbistatin did not affect the phosphorylation of mTOR at Ser2481. Taken together, the present results suggest that blebbistatin induces chondrogenesis by activating the PI3K/PDK1/mTOR/p70S6K pathway. Our data also indicate that Akt activity is essential for chondrogenesis but is regulated by mTORC2, which is independent of blebbistatin treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii43-ii44
Author(s):  
Rifaquat Rahman ◽  
Lorenzo Trippa ◽  
Geoffrey Fell ◽  
Eudocia Lee ◽  
Isabel Arrillaga-Romany ◽  
...  

Abstract BACKGROUND CC-115 is an oral, CNS-penetrant, selective inhibitor of mammalian target of rapamycin kinase (mTOR) and deoxyribonucleic acid-dependent protein kinase (DNA-PK). Both targets are important in glioblastoma; PI3K/Akt/mTOR signaling is hyperactive in most glioblastomas, and DNA-PK is integral to repair of radiotherapy-mediated DNA damage. To investigate CC-115 in newly diagnosed glioblastoma and explore potential genomic biomarker associations, CC-115 was evaluated in the Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) trial, an adaptive platform trial designed to efficiently test experimental agents. METHODS Adults with newly diagnosed MGMT-unmethylated glioblastoma, with genomic data available, are eligible for this ongoing trial. Patients are adaptively randomized to one of several experimental arms or the control arm: standard radiotherapy with concurrent and adjuvant temozolomide. The primary endpoint is overall survival (OS). Patients randomized to CC-115 (10mg po BID) received it concurrently with radiotherapy and as adjuvant monotherapy. As the first in-human use of CC-115 with radiation, a safety lead-in 3 + 3 design was used. RESULTS Twelve patients were randomized to CC-115; seven patients had possible treatment-related CTCAE grade > 3 toxicity, including four pre-specified dose-limiting toxicities: liver function abnormality (n=1), hyperlipidemia (n=1), lipase elevation (n=1) and cerebral edema (n=1). There was no significant difference in progression-free survival (PFS, median 4.2 months [CC-115] vs. 5.2 months, p=0.9) or OS (median 10.1 months [CC-115] vs. 14.5 months, p=0.9) compared to the 50 patients randomized to the control arm. Based on early PFS results, randomization probability to CC-115 decreased from 25% to < 10% at time of the trial arm closure. CONCLUSION Concurrent and adjuvant CC-115 was associated with toxicity and failed to improve PFS or OS. The INSIGhT trial design allowed for more efficient testing of CC-115, decreasing patients and resources allocated to a therapy that was discontinued due to concerns about toxicity and unfavorable risk-to-benefit ratio.


2012 ◽  
Vol 113 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Anjaiah Katta ◽  
Sunil K. Kakarla ◽  
Nandini D. P. K. Manne ◽  
Miaozong Wu ◽  
Sudarsanam Kundla ◽  
...  

Previous data have suggested that insulin-resistant skeletal muscle may exhibit a diminished ability to undergo hypertrophy and that this result may be mediated, at least in part, from decrements in mammalian target of rapamycin (mTOR) signaling (Katta A, Kundla S, Kakarla SK, Wu M, Fannin J, Paturi S, Liu H, Addagarla HS, Blough ER. Am J Physiol Regul Integr Comp Physiol 299: R1666–R1675, 2010). Herein, we attempt to extend these observations by determining if this attenuation in muscle growth is associated with alterations in AMP-activated protein kinase (AMPK) signaling, an upstream mediator of mTOR, and changes in the activation of dsRNA-dependent protein kinase (PKR), which functions as an inhibitor of protein synthesis and potential mediator of protein degradation. Compared with that observed in lean Zucker (LZ) rats, the phosphorylation of AMPKα at Thr172 was higher after 3 wk of overload in the insulin-resistant obese Zucker (OZ) soleus ( P < 0.05). This change in AMPKα phosphorylation was accompanied by increases in the amount of phosphorylated PKR (Thr446), elevations in the PKR-dependent phosphorylation of eukaryotic initiation factor (eIF)-2α (Ser51), augmented p38 MAP kinase (Thr180/Tyr182) phosphorylation, and increases in the amount of protein ubiquitination ( P < 0.05). Taken together, these results suggest that the diminished hypertrophic response we observe in the OZ rat may be mediated, at least in part, by the hyperactivation of AMPK- and PKR-related signaling.


2005 ◽  
Vol 289 (2) ◽  
pp. E187-E196 ◽  
Author(s):  
Lily Q. Dong ◽  
Feng Liu

Activation of members of the protein kinase AGC (cAMP dependent, cGMP dependent, and protein kinase C) family is regulated primarily by phosphorylation at two sites: a conserved threonine residue in the activation loop and a serine/threonine residue in a hydrophobic motif (HM) near the COOH terminus. Although phosphorylation of these kinases in the activation loop has been found to be mediated by phosphoinositide-dependent protein kinase-1 (PDK1), the kinase(s) that catalyzes AGC kinase phosphorylation in the HM remains uncharacterized. So far, at least 10 kinases have been suggested to function as an HM kinase or the so-called “PDK2,” including mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MK2), integrin-linked kinase (ILK), p38 MAP kinase, protein kinase Cα (PKCα), PKCβ, the NIMA-related kinase-6 (NEK6), the mammalian target of rapamycin (mTOR), the double-stranded DNA-dependent protein kinase (DNK-PK), and the ataxia telangiectasia mutated (ATM) gene product. However, whether any or all of these kinases act as a physiological HM kinase remains to be established. Nonetheless, available data suggest that multiple systems may be used in cells to regulate the activation of the AGC family kinases. It is possible that, unlike activation loop phosphorylation, phosphorylation of the HM site in the different AGC family kinases is mediated by distinct kinases. In addition, phosphorylation of the AGC family kinase at the HM site could be cell type, signaling pathway, and substrate specific. Identification and characterization of the bonafide HM kinase(s) will be essential to verify these hypotheses.


2021 ◽  
Vol 11 ◽  
Author(s):  
David Rotella ◽  
John Siekierka ◽  
Purnima Bhanot

The primary effector of cGMP signaling in Plasmodium is the cGMP-dependent protein kinase (PKG). Work in human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei has provided biological validation of P. falciparum PKG (PfPKG) as a drug target for treating and/or protecting against malaria. PfPKG is essential in the asexual erythrocytic and sexual cycles as well as the pre-erythrocytic cycle. Medicinal chemistry efforts, both target-based and phenotype-based, have targeted PfPKG in the past few years. This review provides a brief overview of their results and challenges.


Sign in / Sign up

Export Citation Format

Share Document