scholarly journals Synthesis of Polyaniline Coating on the Modified Fiber Ball and Application for Cr(VI) Removal

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao Li Ma ◽  
Guang Tao Fei ◽  
Shao Hui Xu

Abstract In this study, polyaniline (PANI) is prepared by means of chemical oxidization polymerization and directly loaded on the modified fiber ball (m-FB) to obtain macroscale polyaniline/modified fiber ball (PANI/m-FB) composite, and then its removal ability of Cr(VI) is investigated. The effects of different parameters such as contact time, pH value and initial concentration on Cr(VI) removal efficiency are discussed. The experimental results illustrate that the favorable pH value is 5.0 and the maximum removal capacity is measured to be 293.13 mg g−1. Besides, PANI/m-FB composites can be regenerated and reused after being treated with strong acid. The kinetic study indicates that the adsorption procedure is mainly controlled by chemical adsorption. More importantly, the macroscale of composites can avoid secondary pollution efficiently. Benefiting from the low cost, easy preparation in large scale, environmentally friendly, excellent recycling performance as well as high removal ability, PANI/m-FB composites exhibit a potential possibility to remove Cr(VI) from industrial waste water. Graphic Abstract The polyaniline (PANI) was coated on modified fiber ball (m-FB) to remove Cr(VI) in waste water, and this kind of PANI/m-FB composites can avoid secondary pollution efficiently due to its macrostructure. Furthermore, the removal capacity can reach to 291.13 mg/g and can be multiple reused.

2021 ◽  
Author(s):  
Xiao Li ◽  
Guang Tao Fei ◽  
Shao Hui Xu

Abstract In this study, polyaniline (PANI) is prepared by means of chemical oxidization polymerization and directly loaded on the modified fiber ball (m-FB) to obtain macroscale polyaniline/modified fiber ball (PANI/m-FB) composite, and then its removal ability of Cr(VI) is investigated. The effects of different parameters such as contact time, pH value and initial concentration on Cr(VI) removal efficiency are discussed. The experimental results illustrate that the favourable pH value is 5.0 and the maximum removal capacity is measured to be 293.13 mg·g-1. Besides, PANI/m-FB composites can be regenerated and reused after being treated with strong acid. The kinetic study indicates that the adsorption procedure is mainly controlled by chemical adsorption. More importantly, the macroscale of composites can avoid secondary pollution efficiently. Benefiting from the low cost, easy preparation in large scale, environmentally friendly, excellent recycling performance as well as high removal ability, PANI/m-FB composites exhibit a potential possibility to remove Cr(VI) from industrial waste water.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 781 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Lv

The removal efficiency and mechanism of Cr(VI) removal from aqueous solution on semi-decomposed maize straw biochars pyrolyzed at 300 to 600 °C were investigated. The removal of Cr(VI) by the biochars decreased with pyrolysis temperature increasing from 300 to 600 °C, and the maximum removal capacity of Cr(VI) for maize straw biochar pyrolyzed at 300 °C was 91 mg/g at pH 2.0. The percentage removal of Cr(VI) rapidly decreased with pH increasing from 2.0 to 8.0, with the maximum (>99.9%) at pH 2.0. The variation of Cr(VI) and Cr(III) concentrations in the solution after reaction showed that Cr(VI) concentration decreased while Cr(III) increased and the equilibrium was reached after 48 h, while the redox potential after reaction decreased due to Cr(VI) reduction. X-ray photoelectron spectroscopy (XPS) semi-quantitative analysis showed that Cr(III) accounted for 75.7% of the total Cr bound to maize straw biochar, which indicated reductive adsorption was responsible for Cr(VI) removal by the biochars. Cr(VI) was firstly adsorbed onto the positively charged biochar surface and reduced to Cr(III) by electrons provided by oxygen-containing functional groups (e.g., C=O), and subsequently part of the converted Cr(III) remained on the biochar surface and the rest released into solution. Fourier transform infrared (FTIR) data indicated the participation of C=O, Si–O, –CH2 and –CH3 groups in Cr(VI) removal by the biochars. This study showed that maize straw biochar pyrolyzed at 300 °C for 2 h was one low-cost and efficient adsorbent for Cr(VI) removal from aqueous solution.


2013 ◽  
Vol 774-776 ◽  
pp. 733-736
Author(s):  
Zeng Xin Li ◽  
Guo Ming Wang ◽  
Qiang Liang ◽  
Xiao Feng Wang

The development of new water pollution control technology, particularly the development of high efficiency and low cost adsorbents is imperative. A compound adsorbent was prepared with the combination of chitosan and bentonite. Bentonite was added in chitosan slurry of 95% the degree of deacetylation to prepare adsorbent which mass ratio is 1:5. Its absorptivity toward Cu2+was studied. The results show: the dosage of the adsorbent is 14 g/L,the mass concentration of Cu2+in wastewater does not exceed 180 mg/L,the pH value range from 6 to7,the adsorption equilibrium time is about 9 h and Cu2+removal efficiency is over 97%.The low cost of adsorbents can be used to control industrial waste water containing copper.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 731
Author(s):  
Peng Sun ◽  
Yongxin Cong ◽  
Ming Xu ◽  
Huaqing Si ◽  
Dan Zhao ◽  
...  

Deoxyribonucleic acid (DNA) sequencing technology provides important data for the disclosure of genetic information and plays an important role in gene diagnosis and gene therapy. Conventional sequencing devices are expensive and require large and bulky optical structures and additional fluorescent labeling steps. Sequencing equipment based on a semiconductor chip has the advantages of fast sequencing speed, low cost and small size. The detection of DNA base pairing is the most important step in gene sequencing. In this study, a large-scale ion-sensitive field-effect transistor (ISFET) array chip with more than 13 million sensitive units is successfully designed for detecting the DNA base pairing. DNA base pairing is successfully detected by the sensor system, which includes the ISFET microarray chip, microfluidic system, and test platform. The chip achieves a high resolution of at least 0.5 mV, thus enabling the recognition of the change of 0.01 pH value. This complementary metal-oxide semiconductor (CMOS) compatible and cost-efficient sensor array chip, together with other specially designed components, can form a complete DNA sequencing system with potential application in the molecular biology fields.


2021 ◽  
Vol 9 ◽  
Author(s):  
Can Liu ◽  
Li Tan ◽  
Liming Zhang ◽  
Weiqian Tian ◽  
Lanqing Ma

Antibiotic pollution is becoming an increasingly serious threat in different regions of China. The distribution of antibiotics in water sources varies significantly in time and space, corresponding to the amount of antibiotics used locally. The main source of this contamination in the aquatic environment is wastewater from antibiotic manufacturers, large scale animal farming, and hospitals. In response to the excessive antibiotic contamination in the water environment globally, environmentally friendly alternatives to antibiotics are being developed to reduce their use. Furthermore, researchers have developed various antibiotic treatment techniques for the degradation of antibiotics, such as physical adsorption, chemical oxidation, photodegradation, and biodegradation. Among them, biodegradation is receiving increasing attention because of its low cost, ease of operation, and lack of secondary pollution. Antibiotic degradation by enzymes could become the key strategy of management of antibiotics pollution in the environment in future. This review summarizes research on the distribution of antibiotics in China’s aquatic environments and different techniques for the degradation of antibiotics. Special attention is paid to their degradation by various enzymes. The adverse effects of the pollutants and need for more effective monitoring and mitigating pollution are also highlighted.


2019 ◽  
Vol 11 (2) ◽  
pp. 229-245
Author(s):  
Hatem Asal Gzar ◽  
Noor Qassim Sabri

Natural materials that are readily available in large amounts in nature and easily accessible may be used as low cost additives. The aim of this study is to measure the susceptibility of these locally available materials, conocarpus plant, to improve the quality of wastewater discharged from textile industry. In addition to conocarpus- without chemically treated, conocarpus- chemically treated, carbonized conocarpus and activated carbon were used as adsorbents in order to make a comparison, and to test which one of the four types give the best efficiency for removing dye. The ability of adsorbents to adsorb dye was studied using continuous system; studied parameters were effect of flow rate, bed depth, and initial concentration. The experimental results showed that maximum removal efficiency of conocarpus - without chemically treated was found to be 90% after 75 min at flow rate 20 l/h, pH value 3 , bed depth 5cm and initial concentration 40 mg/l. The maximum removal efficiency for conocarpus- chemically treated was up to 83.75% after 15 min at flow rate 10 l/h, pH value 3, bed depth 10 cm and initial dye concentration 40 mg/l. The maximum removal efficiency for carbonized conocarpus was up to 99.67% after 15 min at flow rate 10 l/h, pH value 3, bed depth 10 cm and initial dye concentration 40 mg/l. For activated carbon the maximum removal efficiency was found to be 99.75% after 15 min at flow rate 10 l/h, pH value 3, bed depth 10cm and initial dye concentration 40 mg/l.


2014 ◽  
Vol 70 (8) ◽  
pp. 1391-1397 ◽  
Author(s):  
Jie Li ◽  
Yi-nan Wu ◽  
Zehua Li ◽  
Miao Zhu ◽  
Fengting Li

Contamination of arsenic in groundwater and surface water occurs frequently across the globe, requiring an effective purification technology. Among the common technologies, the adsorption method is widely used for the merits of low cost and easy operation. Nevertheless, the development of efficient adsorbents remains one of the central challenges in this field. In this article, one kind of typical porous metal–organic framework material (MIL-53(Al)) was explored for the removal of arsenate from water. MIL-53(Al) has a maximum removal capacity of 105.6 mg/g and a conditional capacity of 15.4 mg/g at a low equilibrium concentration (10 μg/L). The optimum initial pH value is 8.0. Except for PO43−, other coexisting anions do not show a notable influence on the adsorption capacity of MIL-53(Al). In general, MIL-53(Al) is a promising new material for arsenate removal from water. Investigation of the effects of electrical charges, Fourier transform infrared spectroscopy spectra, and X-ray photoelectron spectroscopy (XPS) spectra revealed that electrostatic attraction and hydrogen bond might be involved in the adsorption process of arsenate onto MIL-53(Al).


2013 ◽  
Vol 873 ◽  
pp. 689-696
Author(s):  
Hai Wei Ren ◽  
Jin Ping Li ◽  
Yi Zhang ◽  
Zhi Zhong Li

Lignocellulosic biomass-derived sugars is considered to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid (LA). The aim of this study was to investigate the possibility of LA production from distillers grains hydrolysates (DGHs) by the Rhizopus oryzae CICC41411 and to optimize the biological conversion of reducing sugar into LA to evaluate the culture conditions. The effects of factors such as nitrogen source, inoculations size, CaCO3 addition, pH value and fermentation time on the lactic acid concentration (LAC) and the reducing sugars utilization rate (RSUR) were researched. The results show that ammonium chloride is the most favorable nitrogen source for LA production by Rhizopus. Oryzae CICC41411, the optimal fermentation conditions are inoculation size of 2.5% seed culture, CaCO3 addition of 80 g·L-1, fermentation time of 96 h and culture pH of 6.0. This study provides an encouraging means of producing LA from lignocellulosic resource such as the low-cost distillers grains.


2020 ◽  
Vol 9 (1) ◽  
pp. 218-223

A higher percentage of dyes from the industrial waste water are being released into aquatic ecosystems and polluted the natural ecosystem. An abundance of technologies available for removal of Dyes from the industrial waste water are expensive and ineffective. Many of these processes are economically not viable for small and medium scale industries due to large scale applications.Recent Investigational researches have proved that the successful elimination of dyes is obtained using numerous economically available non-conventional adsorbents also. Several experimental investigations on adsorption provedthattremendous treatment for dye removal and can be obtained using cheaply available non-conventional adsorbent.This review is mainly focused to the systematic study on utilizing low cost absorbent of dye removal from the effluents discharged from the industries. The data on economically cheap adsorbents and its properties for removing dyes resulted from the recent literature survey are summarized. Therefore, this review provides the various methods to treat the wastewater using low-price natural sources of adsorption materials, non-viable biomaterials.


2019 ◽  
Vol 11 (2) ◽  
pp. 246-255 ◽  
Author(s):  
Hatem Asal Gzar ◽  
Noor Qassim Sabri

Natural materials that are readily available in large amounts in nature and easily accessible may be used as low cost additives. The aim of this study is to measure the susceptibility of these locally available materials, conocarpus plant, to improve the quality of wastewater discharged from textile industry.  In addition to conocarpus plant, carbonized conocarpus and activated carbon were used as adsorbents in order to make a comparison, and to test which one of the three types give the best efficiency for removing dye. The ability of adsorbents to adsorb dye was studied using batch system; studied parameters were effect of pH, dose of adsorbents, time, and agitation speed. The experimental results showed that the maximum removal efficiency of conocarpus was found to be 87.5% at 50 rpm mixing speed, pH value 3 , mixing time 120 min and the dose of adsorbent was 0.25 g.  The maximum removal efficiency for carbonized conocarpus was up to 98.7% at 150 rpm mixing speed, pH value 3 , mixing time was equal to 7 hours and the dose of sorbent was 1.25 g. For activated carbon the maximum removal efficiency was found to be 99% at mixing speed of 200 rpm, pH value 3 or 11, mixing time was equal to 7 hours and the dose of the sorbent was 1.25 g. The above removal efficiencies were obtained at temperature 20 °C.


Sign in / Sign up

Export Citation Format

Share Document