scholarly journals Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mengxiao Yan ◽  
Ruibin Liu ◽  
Ying Li ◽  
Andrew L. Hipp ◽  
Min Deng ◽  
...  

Abstract Background Understanding the origin of genetic variation is the key to predict how species will respond to future climate change. The genus Quercus is a species-rich and ecologically diverse woody genus that dominates a wide range of forests and woodland communities of the Northern Hemisphere. Quercus thus offers a unique opportunity to investigate how adaptation to environmental changes has shaped the spatial genetic structure of closely related lineages. Furthermore, Quercus provides a deep insight into how tree species will respond to future climate change. This study investigated whether closely related Quercus lineages have similar spatial genetic structures and moreover, what roles have their geographic distribution, ecological tolerance, and historical environmental changes played in the similar or distinct genetic structures. Results Despite their close relationships, the three main oak lineages (Quercus sections Cyclobalanopsis, Ilex, and Quercus) have different spatial genetic patterns and occupy different climatic niches. The lowest level and most homogeneous pattern of genetic diversity was found in section Cyclobalanopsis, which is restricted to warm and humid climates. The highest genetic diversity and strongest geographic genetic structure were found in section Ilex, which is due to their long-term isolation and strong local adaptation. The widespread section Quercus is distributed across the most heterogeneous range of environments; however, it exhibited moderate haplotype diversity. This is likely due to regional extinction during Quaternary climatic fluctuation in Europe and North America. Conclusions Genetic variations of sections Ilex and Quercus were significantly predicted by geographic and climate variations, while those of section Cyclobalanopsis were poorly predictable by geographic or climatic diversity. Apart from the different historical environmental changes experienced by different sections, variation of their ecological or climatic tolerances and physiological traits induced varying responses to similar environment changes, resulting in distinct spatial genetic patterns.

Mammalia ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. 10-25 ◽  
Author(s):  
Govan Pahad ◽  
Claudine Montgelard ◽  
Bettine Jansen van Vuuren

Abstract Phylogeography examines the spatial genetic structure of species. Environmental niche modelling (or ecological niche modelling; ENM) examines the environmental limits of a species’ ecological niche. These two fields have great potential to be used together. ENM can shed light on how phylogeographical patterns develop and help identify possible drivers of spatial structure that need to be further investigated. Specifically, ENM can be used to test for niche differentiation among clades, identify factors limiting individual clades and identify barriers and contact zones. It can also be used to test hypotheses regarding the effects of historical and future climate change on spatial genetic patterns by projecting niches using palaeoclimate or future climate data. Conversely, phylogeographical information can populate ENM with within-species genetic diversity. Where adaptive variation exists among clades within a species, modelling their niches separately can improve predictions of historical distribution patterns and future responses to climate change. Awareness of patterns of genetic diversity in niche modelling can also alert conservationists to the potential loss of genetically diverse areas in a species’ range. Here, we provide a simplistic overview of both fields, and focus on their potential for integration, encouraging researchers on both sides to take advantage of the opportunities available.


2019 ◽  
Vol 116 (21) ◽  
pp. 10418-10423 ◽  
Author(s):  
Orly Razgour ◽  
Brenna Forester ◽  
John B. Taggart ◽  
Michaël Bekaert ◽  
Javier Juste ◽  
...  

Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.


2013 ◽  
Vol 4 (2) ◽  
pp. 132-137 ◽  
Author(s):  
Glenn Yannic ◽  
Loïc Pellissier ◽  
Joaquín Ortego ◽  
Nicolas Lecomte ◽  
Serge Couturier ◽  
...  

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Seung-Beom Chae ◽  
Hyo-In Lim ◽  
Yong-Yul Kim

The restoration of damaged or disrupted forests with genetically appropriate restoration planting material that can adapt to future environmental conditions will ensure the conservation of forest genetic resources. Abies koreana is endemic to the Republic of Korea, with declining populations under current environmental changes. In this study, we examined the genetic diversity of its largest population growing on Mt. Hallasan to determine the sampling size of planting material from the population that will ensure 95% coverage of alleles in the population. We evaluated the genetic diversity and spatial genetic structure of three subpopulations of A. koreana on Mt. Hallasan. A total of 456 samples were evaluated using 10 microsatellites. The observed heterozygosity and expected heterozygosity were 0.538 and 0.614 at the population level, respectively. The differences among the subpopulations accounted for 4% of the total variance. Intervals between individuals of the sample to be extracted were based on the two-target distance (5 and 10 m) inferred from the spatial genetic structure. Through random sampling methods considering the target distance, we showed that genetic diversity can be captured by obtaining at least 35 individuals in the population of A. koreana on Mt. Hallasan.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhenhua Luo ◽  
Xiaoyi Wang ◽  
Shaofa Yang ◽  
Xinlan Cheng ◽  
Yang Liu ◽  
...  

Abstract Background Understanding the impacts of past and contemporary climate change on biodiversity is critical for effective conservation. Amphibians have weak dispersal abilities, putting them at risk of habitat fragmentation and loss. Both climate change and anthropogenic disturbances exacerbate these risks, increasing the likelihood of additional amphibian extinctions in the near future. The giant spiny frog (Quasipaa spinosa), an endemic species to East Asia, has faced a dramatic population decline over the last few decades. Using the giant spiny frog as an indicator to explore how past and future climate changes affect landscape connectivity, we characterized the shifts in the suitable habitat and habitat connectivity of the frog. Results We found a clear northward shift and a reduction in the extent of suitable habitat during the Last Glacial Maximum for giant spiny frogs; since that time, there has been an expansion of the available habitat. Our modelling showed that “overwarm” climatic conditions would most likely cause a decrease in the available habitat and an increase in the magnitude of population fragmentation in the future. We found that the habitat connectivity of the studied frogs will decrease by 50–75% under future climate change. Our results strengthen the notion that the mountains in southern China and the Sino-Vietnamese transboundary regions can act as critical refugia and priority areas of conservation planning going forward. Conclusions Given that amphibians are highly sensitive to environmental changes, our findings highlight that the responses of habitat suitability and connectivity to climate change can be critical considerations in future conservation measures for species with weak dispersal abilities and should not be neglected, as they all too often are.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Wei ◽  
Jiatian Wang ◽  
Zhangyao Song ◽  
Yulan He ◽  
Zihao Zheng ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopictus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus populations, and their relationship to dengue incidence, on a large geographical scale. Methods During 2016–2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The correlation between population genetic indices and dengue incidence was also examined. Results A total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence. Conclusion Strong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases.


Sign in / Sign up

Export Citation Format

Share Document