scholarly journals Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chunyan Li ◽  
Xiaoyun He ◽  
Zijun Zhang ◽  
Chunhuan Ren ◽  
Mingxing Chu

Abstract Background Long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecBBB (MM) and FecB++ (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified. Results Overall, 135 DE lncRNAs and 1360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included. Conclusion All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.

2020 ◽  
Author(s):  
Chunyan Li ◽  
Xiaoyun He ◽  
Zijun Zhang ◽  
Chunhuan Ren ◽  
Mingxing Chu

Abstract Background: long noncoding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, little is known of their expression pattern and potential roles in the pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecBBB (MM) and FecB++ (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified.Results: Overall, 135 DE lncRNAs and 1,360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included.Conclusion: All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.


2020 ◽  
Author(s):  
Chunyan Li ◽  
Xiaoyun He ◽  
Zijun Zhang ◽  
Chunhuan Ren ◽  
Mingxing Chu

Abstract Background: long non-coding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, there is little report about lncRNA in pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecBBB (MM) and FecB++ (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified.Results: Overall, 135 DE lncRNAs and 1,360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, like XLOC_466330, XLOC_532771, XLOC_028449 targeting RRM2B and GSTK1, XLOC_391199 targeting STMN1, XLOC_503926 targeting RAG2, XLOC_187711 targeting DLG4 were included.Conclusion: All of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.


2020 ◽  
Author(s):  
Chunyan Li ◽  
Xiaoyun He ◽  
Zijun Zhang ◽  
Chunhuan Ren ◽  
Mingxing Chu

Abstract Backgroundlong non-coding RNA (lncRNA) has been identified as important regulator in hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, there is little report about lncRNA in pineal gland of sheep. Herein, RNA-Seq was used to detect transcriptome expression pattern in pineal gland between follicular phase (FP) and luteal phase (LP) in FecB BB (MM) and FecB ++ (ww) STH sheep, respectively, and differentially expressed (DE) lncRNAs and mRNAs associated with reproduction were identified.ResultsOverall, 135 DE lncRNAs and 1,360 DE mRNAs in pineal gland between MM and ww sheep were screened. Wherein, 39 DE lncRNAs and 764 DE mRNAs were identified (FP vs LP) in MM sheep, 96 DE lncRNAs and 596 DE mRNAs were identified (FP vs LP) in ww sheep. Moreover, GO and KEGG enrichment analysis indicated that the targets of DE lncRNAs and DE mRNAs were annotated to multiple biological processes such as phototransduction, circadian rhythm, melanogenesis, GSH metabolism and steroid biosynthesis, which directly or indirectly participate in hormone activities to affect sheep reproductive performance. Additionally, co-expression of lncRNAs-mRNAs and the network construction were performed based on correlation analysis, DE lncRNAs can modulate target genes involved in related pathways to affect sheep fecundity. Specifically, like XLOC_466330 , XLOC_532771 , XLOC_028449 targeting RRM2B and GSTK1 , XLOC_391199 targeting STMN1 , XLOC_503926 targeting RAG2 , XLOC_187711 targeting DLG4 were included.ConclusionAll of these differential lncRNAs and mRNAs expression profiles in pineal gland provide a novel resource for elucidating regulatory mechanism underlying STH sheep prolificacy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie He ◽  
Miaomiao Chen ◽  
Jiacheng Xu ◽  
Jie Fang ◽  
Zheng Liu ◽  
...  

AbstractPreeclampsia is a common disease of pregnancy that poses a serious threat to the safety of pregnant women and the fetus; however, the etiology of preeclampsia is inconclusive. Piwi-interacting RNAs (piRNAs) are novel non-coding RNAs that are present at high levels in germ cells and are associated with spermatogenesis. Emerging evidence demonstrated that piRNA is expressed in a variety of human tissues and is closely associated with tumorigenesis. However, changes in the piRNA expression profile in the placenta have not been investigated. In this study, we used small RNA sequencing to evaluate the differences in piRNA expression profiles between preeclampsia and control patients and potential functions. Differential expression analysis found 41 up-regulated and 36 down-regulated piRNAs in preeclamptic samples. In addition, the functional enrichment analysis of piRNAs target genes indicated that they were related to the extracellular matrix (ECM) formation and tissue-specific. Finally, we examined the expression pattern of the PIWL family proteins in the placenta, and PIWL3 and PIWIL4 were the primary subtypes in the human placenta. In summary, this study first summarized the changes in the expression pattern of piRNA in preeclampsia and provided new clues for the regulatory role of piRNA in the human placenta.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoning Wang ◽  
Xingfen Wang ◽  
Yan Zhang ◽  
Jun Yang ◽  
Zhikun Li ◽  
...  

Abstract Background Verticillium wilt is a widespread and destructive disease, which causes serious loss of cotton yield and quality. Long non-coding RNA (lncRNA) is involved in many biological processes, such as plant disease resistance response, through a variety of regulatory mechanisms, but their possible roles in cotton against Verticillium dahliae infection remain largely unclear. Results Here, we measured the transcriptome of resistant G. hirsutum following infection by V. dahliae and 4277 differentially expressed lncRNAs (delncRNAs) were identified. Localization and abundance analysis revealed that delncRNAs were biased distribution on chromosomes. We explored the dynamic characteristics of disease resistance related lncRNAs in chromosome distribution, induced expression profiles, biological function, and these lncRNAs were divided into three categories according to their induced expression profiles. For the delncRNAs, 687 cis-acting pairs and 14,600 trans-acting pairs of lncRNA-mRNA were identified, which indicated that trans-acting was the main way of Verticillium wilt resistance-associated lncRNAs regulating target mRNAs in cotton. Analyzing the regulation pattern of delncRNAs revealed that cis-acting and trans-acting lncRNAs had different ways to influence target genes. Gene Ontology (GO) enrichment analysis revealed that the regulatory function of delncRNAs participated significantly in stimulus response process, kinase activity and plasma membrane components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that delncRNAs participated in some important disease resistance pathways, such as plant-pathogen interaction, alpha-linolenic acid metabolism and plant hormone signal transduction. Additionally, 21 delncRNAs and 10 target genes were identified as being involved in alpha-linolenic acid metabolism associated with the biosynthesis of jasmonic acid (JA). Subsequently, we found that GhlncLOX3 might regulate resistance to V. dahliae through modulating the expression of GhLOX3 implicated in JA biosynthesis. Further functional analysis showed that GhlncLOX3-silenced seedlings displayed a reduced resistance to V. dahliae, with down-regulated expression of GhLOX3 and decreased content of JA. Conclusion This study shows the dynamic characteristics of delncRNAs in multiaspect, and suggests that GhlncLOX3-GhLOX3-JA network participates in response to V. dahliae invasion. Our results provide novel insights for genetic improvement of Verticillium wilt resistance in cotton using lncRNAs.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 545 ◽  
Author(s):  
Wei Wu ◽  
Lingxiang Wu ◽  
Mengyan Zhu ◽  
Ziyu Wang ◽  
Min Wu ◽  
...  

Somatic mutations in 3′-untranslated regions (3′UTR) do not alter amino acids and are considered to be silent in cancers. We found that such mutations can promote tumor progression by altering microRNA (miRNA) targeting efficiency and consequently affecting miRNA–mRNA interactions. We identified 67,159 somatic mutations located in the 3′UTRs of messenger RNAs (mRNAs) which can alter miRNA–mRNA interactions (functional somatic mutations, funcMutations), and 69.3% of these funcMutations (the degree of energy change > 12 kcal/mol) were identified to significantly promote loss of miRNA-mRNA binding. By integrating mRNA expression profiles of 21 cancer types, we found that the expression of target genes was positively correlated with the loss of absolute affinity level and negatively correlated with the gain of absolute affinity level. Functional enrichment analysis revealed that genes carrying funcMutations were significantly enriched in the MAPK and WNT signaling pathways, and analysis of regulatory modules identified eighteen miRNA modules involved with similar cellular functions. Our findings elucidate a complex relationship between miRNA, mRNA, and mutations, and suggest that 3′UTR mutations may play an important role in tumor development.


2021 ◽  
Author(s):  
Weihao Chen ◽  
Zhifeng Li ◽  
Wei Sun ◽  
Mingxing Chu

Abstract Background:In sheep, FecB is the essential biomarker of the fertility, previous researches have provided a detailed insight on the regulation involved estrus phase and FecB in the reproductive-related tissues including hypothalamus, pituitary, and ovary. However, as the host of embryo development and connection between the ovary and the uterus, little is known about the interaction between mRNAs and lncRNAs in sheep oviduct. In the present study, RNA-Seq was performed to identify the transcriptomic profiles of mRNAs and lncRNAs in oviduct during estrus phase of sheep with FecBBB/++ genotypes.Results:In total, 21,863 lncRNAs and 43,674 mRNAs were identified, 57 DE lncRNAs and 637 DE mRNAs were revealed in the comparisons between follicular phase and luteal phase, 26 DE lncRNAs and 421 DE lncRNAs were revealed in the comparisons between FecB BB genotype and FecB ++ genotype. Functional enrichment analysis suggested that GO and KEGG terms related to reproduction such as SAGA complex, ATP-binding cassette (ABC), Nestin, and Hippo signalling pathway. DE-interaction network suggested that LNC_018420 maybe the key regulators related to embryo development in sheep oviduct.Conclusion:This was the first study to reveal the transcriptomic profiles of mRNAs and lncRNAs in the oviduct of FecB BB/++ sheep at estrus phase using RNA-Seq. Our findings can provide new understanding on the molecular mechanisms of mRNAs and lncRNAs underlying sheep embryo development and also opening new lines of investigation in sheep reproduction.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1359
Author(s):  
Ho-Yeon Lee ◽  
Jae-Yoon Kim ◽  
Kyoung Hyoun Kim ◽  
Seongmun Jeong ◽  
Youngbum Cho ◽  
...  

Horses have been studied for exercise function rather than food production, unlike most livestock. Therefore, the role and characteristics of tissue landscapes are critically understudied, except for certain muscles used in exercise-related studies. In the present study, we compared RNA-Seq data from 18 Jeju horse skeletal muscles to identify differentially expressed genes (DEGs) between tissues that have similar functions and to characterize these differences. We identified DEGs between different muscles using pairwise differential expression (DE) analyses of tissue transcriptome expression data and classified the samples using the expression values of those genes. Each tissue was largely classified into two groups and their subgroups by k-means clustering, and the DEGs identified in comparison between each group were analyzed by functional/pathway level using gene set enrichment analysis and gene level, confirming the expression of significant genes. As a result of the analysis, the differences in metabolic properties like glycolysis, oxidative phosphorylation, and exercise adaptation of the groups were detected. The results demonstrated that the biochemical and anatomical features of a wide range of muscle tissues in horses could be determined through transcriptome expression analysis, and provided proof-of-concept data demonstrating that RNA-Seq analysis can be used to classify and study in-depth differences between tissues with similar properties.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1565
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.


Sign in / Sign up

Export Citation Format

Share Document