scholarly journals The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Feng Wen ◽  
Xiaozhu Wu ◽  
Tongjian Li ◽  
Mingliang Jia ◽  
Xinsheng Liu ◽  
...  

Abstract Background Stauntonia chinensis DC. belongs to subfamily Lardizabaloideae, which is widely grown throughout southern China. It has been used as a traditional herbal medicinal plant, which could synthesize a number of triterpenoid saponins with anticancer and anti-inflammatory activities. However, the wild resources of this species and its relatives were threatened by over-exploitation before the genetic diversity and evolutionary analysis were uncovered. Thus, the complete chloroplast genome sequences of Stauntonia chinensis and comparative analysis of chloroplast genomes of Lardizabaloideae species are necessary and crucial to understand the plastome evolution of this subfamily. Results A series of analyses including genome structure, GC content, repeat structure, SSR component, nucleotide diversity and codon usage were performed by comparing chloroplast genomes of Stauntonia chinensis and its relatives. Although the chloroplast genomes of eight Lardizabaloideae plants were evolutionary conserved, the comparative analysis also showed several variation hotspots, which were considered as highly variable regions. Additionally, pairwise Ka/Ks analysis showed that most of the chloroplast genes of Lardizabaloideae species underwent purifying selection, whereas 25 chloroplast protein coding genes were identified with positive selection in this subfamily species by using branch-site model. Bayesian and ML phylogeny on CCG (complete chloroplast genome) and CDs (coding DNA sequences) produced a well-resolved phylogeny of Lardizabaloideae plastid lineages. Conclusions This study enhanced the understanding of the evolution of Lardizabaloideae and its relatives. All the obtained genetic resources will facilitate future studies in DNA barcode, species discrimination, the intraspecific and interspecific variability and the phylogenetic relationships of subfamily Lardizabaloideae.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6563
Author(s):  
Jianying Sun ◽  
Xiaofeng Dong ◽  
Qinghe Cao ◽  
Tao Xu ◽  
Mingku Zhu ◽  
...  

Background Ipomoea is the largest genus in the family Convolvulaceae. The species in this genus have been widely used in many fields, such as agriculture, nutrition, and medicine. With the development of next-generation sequencing, more than 50 chloroplast genomes of Ipomoea species have been sequenced. However, the repeats and divergence regions in Ipomoea have not been well investigated. In the present study, we sequenced and assembled eight chloroplast genomes from sweet potato’s close wild relatives. By combining these with 32 published chloroplast genomes, we conducted a detailed comparative analysis of a broad range of Ipomoea species. Methods Eight chloroplast genomes were assembled using short DNA sequences generated by next-generation sequencing technology. By combining these chloroplast genomes with 32 other published Ipomoea chloroplast genomes downloaded from GenBank and the Oxford Research Archive, we conducted a comparative analysis of the repeat sequences and divergence regions across the Ipomoea genus. In addition, separate analyses of the Batatas group and Quamoclit group were also performed. Results The eight newly sequenced chloroplast genomes ranged from 161,225 to 161,721 bp in length and displayed the typical circular quadripartite structure, consisting of a pair of inverted repeat (IR) regions (30,798–30,910 bp each) separated by a large single copy (LSC) region (87,575–88,004 bp) and a small single copy (SSC) region (12,018–12,051 bp). The average guanine-cytosine (GC) content was approximately 40.5% in the IR region, 36.1% in the LSC region, 32.2% in the SSC regions, and 37.5% in complete sequence for all the generated plastomes. The eight chloroplast genome sequences from this study included 80 protein-coding genes, four rRNAs (rrn23, rrn16, rrn5, and rrn4.5), and 37 tRNAs. The boundaries of single copy regions and IR regions were highly conserved in the eight chloroplast genomes. In Ipomoea, 57–89 pairs of repetitive sequences and 39–64 simple sequence repeats were found. By conducting a sliding window analysis, we found six relatively high variable regions (ndhA intron, ndhH-ndhF, ndhF-rpl32, rpl32-trnL, rps16-trnQ, and ndhF) in the Ipomoea genus, eight (trnG, rpl32-trnL, ndhA intron, ndhF-rpl32, ndhH-ndhF, ccsA-ndhD, trnG-trnR, and pasA-ycf3) in the Batatas group, and eight (ndhA intron, petN-psbM, rpl32-trnL, trnG-trnR, trnK-rps16, ndhC-trnV, rps16-trnQ, and trnG) in the Quamoclit group. Our maximum-likelihood tree based on whole chloroplast genomes confirmed the phylogenetic topology reported in previous studies. Conclusions The chloroplast genome sequence and structure were highly conserved in the eight newly-sequenced Ipomoea species. Our comparative analysis included a broad range of Ipomoea chloroplast genomes, providing valuable information for Ipomoea species identification and enhancing the understanding of Ipomoea genetic resources.


2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Tan ◽  
Han Gao ◽  
Weiling Jiang ◽  
Huanyu Zhang ◽  
Xiaolei Yu ◽  
...  

Abstract Chloroplast genomes have been widely considered an informative and valuable resource for molecular marker development and phylogenetic reconstruction in plant species. This study evaluated the complete chloroplast genomes of the traditional Chinese medicine Gleditsia sinensis and G. japonica, an adulterant of the former. The complete chloroplast genomes of G. sinensis and G. japonica were found to be of sizes 163,175 bp and 162,391 bp, respectively. A total of 111 genes were identified in each chloroplast genome, including 77 coding sequences, 30 tRNA, and 4 rRNA genes. Comparative analysis demonstrated that the chloroplast genomes of these two species were highly conserved in genome size, GC contents, and gene organization. Additionally, nucleotide diversity analysis of the two chloroplast genomes revealed that the two short regions of ycf1b were highly diverse, and could be treated as mini-barcode candidate regions. The mini-barcode of primers ZJ818F-1038R was proven to precisely discriminate between these two species and reflect their biomass ratio accurately. Overall, the findings of our study will shed light on the genetic evolution and guide species identification of G. sinensis and G. japonica.


2019 ◽  
Author(s):  
Tapan Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Adil Khan ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

AbstractChloroplasts are unique organelles within the plant cells and are responsible for sustaining life forms on the earth due to their ability to conduct photosynthesis. Multiple functional genes within the chloroplast are responsible for a variety of metabolic processes that occur in the chloroplast. Considering its fundamental role in sustaining life on the earth, it is important to identify the level of diversity present in the chloroplast genome, what genes and genomic content have been lost, what genes have been transferred to the nuclear genome, duplication events, and the overall origin and evolution of the chloroplast genome. Our analysis of 2511 chloroplast genomes indicated that the genome size and number of coding DNA sequences (CDS) in the chloroplasts genome of algae are higher relative to other lineages. Approximately 10.31% of the examined species have lost the inverted repeats (IR) in the chloroplast genome that span across all the lineages. Genome-wide analyses revealed the loss of the Rbcl gene in parasitic and heterotrophic plants occurred approximately 56 Ma ago. PsaM, Psb30, ChlB, ChlL, ChlN, and Rpl21 were found to be characteristic signature genes of the chloroplast genome of algae, bryophytes, pteridophytes, and gymnosperms; however, none of these genes were found in the angiosperm or magnoliid lineage which appeared to have lost them approximately 203–156 Ma ago. A variety of chloroplast-encoded genes were lost across different species lineages throughout the evolutionary process. The Rpl20 gene, however, was found to be the most stable and intact gene in the chloroplast genome and was not lost in any of the analyzed species, suggesting that it is a signature gene of the plastome. Our evolutionary analysis indicated that chloroplast genomes evolved from multiple common ancestors ~1293 Ma ago and have undergone vivid recombination events across different taxonomic lineages.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 474 ◽  
Author(s):  
Dong-Mei Li ◽  
Chao-Yi Zhao ◽  
Xiao-Fei Liu

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Fan ◽  
Ya’nan Jin ◽  
Mengqi Ding ◽  
Yu Tang ◽  
Jianping Cheng ◽  
...  

Buckwheat (Fagopyrum genus, Polygonaceae), is an annual or perennial, herbaceous or semi-shrub dicotyledonous plant. There are mainly three cultivated buckwheat species, common buckwheat (Fagopyrum esculentum) is widely cultivated in Asia, Europe, and America, while Tartary buckwheat (F. tataricum) and F. cymosum (also known as F. dibotrys) are mainly cultivated in China. The genus Fagopyrum is taxonomically confusing due to the complex phenotypes of different Fagopyrum species. In this study, the chloroplast (cp) genomes of three Fagopyrum species, F. longistylum, F. leptopodum, F. urophyllum, were sequenced, and five published cp genomes of Fagopyrum were retrieved for comparative analyses. We determined the sequence differentiation, repeated sequences of the cp genomes, and the phylogeny of Fagopyrum species. The eight cp genomes ranged, gene number, gene order, and GC content were presented. Most of variations of Fagopyrum species cp genomes existed in the LSC and SSC regions. Among eight Fagopyrum chloroplast genomes, six variable regions (ndhF-rpl32, trnS-trnG, trnC, trnE-trnT, psbD, and trnV) were detected as promising DNA barcodes. In addition, a total of 66 different SSR (simple sequence repeats) types were found in the eight Fagopyrum species, ranging from 8 to 16 bp. Interestingly, many SSRs showed significant differences especially in some photosystem genes, which provided valuable information for understanding the differences in light adaptation among different Fagopyrum species. Genus Fagopyrum has shown a typical branch that is distinguished from the Rumex, Rheum, and Reynoutria, which supports the unique taxonomic status in Fagopyrum among the Polygonaceae. In addition, phylogenetic analysis based on the cp genomes strongly supported the division of eight Fagopyrum species into two independent evolutionary directions, suggesting that the separation of cymosum group and urophyllum group may be earlier than the flower type differentiation in Fagopyrum plants. The results of the chloroplast-based phylogenetic tree were further supported by the matK and Internal Transcribed Spacer (ITS) sequences of 17 Fagopyrum species, which may help to further anchor the taxonomic status of other members in the urophyllum group in Fagopyrum. This study provides valuable information and high-quality cp genomes for identifying species and evolutionary analysis for future Fagopyrum research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Xu ◽  
Chen Liu ◽  
Yun Song ◽  
Mingfu Li

The genus Pennisetum (Poaceae) is both a forage crop and staple food crop in the tropics. In this study, we obtained chloroplast genome sequences of four species of Pennisetum (P. alopecuroides, P. clandestinum, P. glaucum, and P. polystachion) using Illumina sequencing. These chloroplast genomes have circular structures of 136,346–138,119 bp, including a large single-copy region (LSC, 79,380–81,186 bp), a small single-copy region (SSC, 12,212–12,409 bp), and a pair of inverted repeat regions (IRs, 22,284–22,372 bp). The overall GC content of these chloroplast genomes was 38.6–38.7%. The complete chloroplast genomes contained 110 different genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analysis of nucleotide variability identified nine intergenic spacer regions (psbA-matK, matK-rps16, trnN-trnT, trnY-trnD-psbM, petN-trnC, rbcL-psaI, petA-psbJ, psbE-petL, and rpl32-trnL), which may be used as potential DNA barcodes in future species identification and evolutionary analysis of Pennisetum. The phylogenetic analysis revealed a close relationship between P. polystachion and P. glaucum, followed by P. clandestinum and P. alopecuroides. The completed genomes of this study will help facilitate future research on the phylogenetic relationships and evolution of Pennisetum species.


2019 ◽  
Vol 20 (23) ◽  
pp. 5940
Author(s):  
Xinbo Pang ◽  
Hongshan Liu ◽  
Suran Wu ◽  
Yangchen Yuan ◽  
Haijun Li ◽  
...  

Species identification of oaks (Quercus) is always a challenge because many species exhibit variable phenotypes that overlap with other species. Oaks are notorious for interspecific hybridization and introgression, and complex speciation patterns involving incomplete lineage sorting. Therefore, accurately identifying Quercus species barcodes has been unsuccessful. In this study, we used chloroplast genome sequence data to identify molecular markers for oak species identification. Using next generation sequencing methods, we sequenced 14 chloroplast genomes of Quercus species in this study and added 10 additional chloroplast genome sequences from GenBank to develop a DNA barcode for oaks. Chloroplast genome sequence divergence was low. We identified four mutation hotspots as candidate Quercus DNA barcodes; two intergenic regions (matK-trnK-rps16 and trnR-atpA) were located in the large single copy region, and two coding regions (ndhF and ycf1b) were located in the small single copy region. The standard plant DNA barcode (rbcL and matK) had lower variability than that of the newly identified markers. Our data provide complete chloroplast genome sequences that improve the phylogenetic resolution and species level discrimination of Quercus. This study demonstrates that the complete chloroplast genome can substantially increase species discriminatory power and resolve phylogenetic relationships in plants.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1133
Author(s):  
Tapan Kumar Mohanta ◽  
Awdhesh Kumar Mishra ◽  
Adil Khan ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
...  

Chloroplasts are unique organelles within the plant cells and are responsible for sustaining life forms on the earth due to their ability to conduct photosynthesis. Multiple functional genes within the chloroplast are responsible for a variety of metabolic processes that occur in the chloroplast. Considering its fundamental role in sustaining life on the earth, it is important to identify the level of diversity present in the chloroplast genome, what genes and genomic content have been lost, what genes have been transferred to the nuclear genome, duplication events, and the overall origin and evolution of the chloroplast genome. Our analysis of 2511 chloroplast genomes indicated that the genome size and number of coding DNA sequences (CDS) in the chloroplasts genome of algae are higher relative to other lineages. Approximately 10.31% of the examined species have lost the inverted repeats (IR) in the chloroplast genome that span across all the lineages. Genome-wide analyses revealed the loss of the Rbcl gene in parasitic and heterotrophic plants occurred approximately 56 Ma ago. PsaM, Psb30, ChlB, ChlL, ChlN, and Rpl21 were found to be characteristic signature genes of the chloroplast genome of algae, bryophytes, pteridophytes, and gymnosperms; however, none of these genes were found in the angiosperm or magnoliid lineage which appeared to have lost them approximately 203–156 Ma ago. A variety of chloroplast-encoded genes were lost across different species lineages throughout the evolutionary process. The Rpl20 gene, however, was found to be the most stable and intact gene in the chloroplast genome and was not lost in any of the analyzed species, suggesting that it is a signature gene of the plastome. Our evolutionary analysis indicated that chloroplast genomes evolved from multiple common ancestors ~1293 Ma ago and have undergone vivid recombination events across different taxonomic lineages.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Jongsun Park ◽  
Hong Xi ◽  
Yongsung Kim

Arabidopsis thaliana (L.) Heynh. is a model organism of plant molecular biology. More than 1,700 whole genome sequences have been sequenced, but no Korean isolate genomes have been sequenced thus far despite the fact that many A. thaliana isolated in Japan and China have been sequenced. To understand the genetic background of Korean natural A. thaliana (named as 180404IB4), we presented its complete chloroplast genome, which is 154,464 bp long and has four subregions: 85,164 bp of large single copy (LSC) and 17,781 bp of small single copy (SSC) regions are separated by 26,257 bp of inverted repeat (IRs) regions including 130 genes (85 protein-coding genes, eight rRNAs, and 37 tRNAs). Fifty single nucleotide polymorphisms (SNPs) and 14 insertion and deletions (INDELs) are identified between 180404IB4 and Col0. In addition, 101 SSRs and 42 extendedSSRs were identified on the Korean A. thaliana chloroplast genome, indicating a similar number of SSRs on the rest five chloroplast genomes with a preference of sequence variations toward the SSR region. A nucleotide diversity analysis revealed two highly variable regions on A. thaliana chloroplast genomes. Phylogenetic trees with three more chloroplast genomes of East Asian natural isolates show that Korean and Chinese natural isolates are clustered together, whereas two Japanese isolates are not clustered, suggesting the need for additional investigations of the chloroplast genomes of East Asian isolates.


Sign in / Sign up

Export Citation Format

Share Document