scholarly journals ATAC-seq with unique molecular identifiers improves quantification and footprinting

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tao Zhu ◽  
Keyan Liao ◽  
Rongfang Zhou ◽  
Chunjiao Xia ◽  
Weibo Xie

AbstractATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) provides an efficient way to analyze nucleosome-free regions and has been applied widely to identify transcription factor footprints. Both applications rely on the accurate quantification of insertion events of the hyperactive transposase Tn5. However, due to the presence of the PCR amplification, it is impossible to accurately distinguish independently generated identical Tn5 insertion events from PCR duplicates using the standard ATAC-seq technique. Removing PCR duplicates based on mapping coordinates introduces increasing bias towards highly accessible chromatin regions. To overcome this limitation, we establish a UMI-ATAC-seq technique by incorporating unique molecular identifiers (UMIs) into standard ATAC-seq procedures. UMI-ATAC-seq can rescue about 20% of reads that are mistaken as PCR duplicates in standard ATAC-seq in our study. We demonstrate that UMI-ATAC-seq could more accurately quantify chromatin accessibility and significantly improve the sensitivity of identifying transcription factor footprints. An analytic pipeline is developed to facilitate the application of UMI-ATAC-seq, and it is available at https://github.com/tzhu-bio/UMI-ATAC-seq.

2020 ◽  
Author(s):  
Tao Zhu ◽  
Keyan Liao ◽  
Rongfang Zhou ◽  
Chunjiao Xia ◽  
Weibo Xie

AbstractATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) provides an efficient way to analyze nucleosome-free regions and has been applied widely to identify transcription factor footprints. Both applications rely on the accurate quantification of insertion events of the hyperactive transposase Tn5. However, due to the presence of the PCR amplification, it is impossible to accurately distinguish independently generated identical Tn5 insertion events from PCR duplicates using the standard ATAC-seq technique. Removing PCR duplicates based on mapping coordinates introduces an increasing bias towards highly accessible chromatin regions. To overcome this limitation, we establish a UMI-ATAC-seq technique by incorporating unique molecular identifiers (UMIs) into standard ATAC-seq procedures. In our study, UMI-ATAC-seq can rescue about 20% of reads that are mistaken as PCR duplicates in standard ATAC-seq, which helps identify an additional 50% or more of footprints. We demonstrate that UMI-ATAC-seq could more accurately quantify chromatin accessibility and significantly improve the sensitivity of identifying transcription factor footprints. An analytic pipeline is developed to facilitate the application of UMI-ATAC-seq, and it is available at https://github.com/tzhu-bio/UMI-ATAC-seq.


Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xue Lin ◽  
Yingying Hua ◽  
Shuanglin Gu ◽  
Li Lv ◽  
Xingyu Li ◽  
...  

Abstract Background Genomic localized hypermutation regions were found in cancers, which were reported to be related to the prognosis of cancers. This genomic localized hypermutation is quite different from the usual somatic mutations in the frequency of occurrence and genomic density. It is like a mutations “violent storm”, which is just what the Greek word “kataegis” means. Results There are needs for a light-weighted and simple-to-use toolkit to identify and visualize the localized hypermutation regions in genome. Thus we developed the R package “kataegis” to meet these needs. The package used only three steps to identify the genomic hypermutation regions, i.e., i) read in the variation files in standard formats; ii) calculate the inter-mutational distances; iii) identify the hypermutation regions with appropriate parameters, and finally one step to visualize the nucleotide contents and spectra of both the foci and flanking regions, and the genomic landscape of these regions. Conclusions The kataegis package is available on Bionconductor/Github (https://github.com/flosalbizziae/kataegis), which provides a light-weighted and simple-to-use toolkit for quickly identifying and visualizing the genomic hypermuation regions.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2337 ◽  
Author(s):  
Xixia Liu ◽  
Qi Lu ◽  
Sirui Chen ◽  
Fang Wang ◽  
Jianjun Hou ◽  
...  

We describe a multiple combined strategy to discover novel aptamers specific for clenbuterol (CBL). An immobilized ssDNA library was used for the selection of specific aptamers using the systematic evolution of ligands by exponential enrichment (SELEX). Progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing. Candidate aptamers were picked and preliminarily identified using a gold nanoparticles (AuNPs) biosensor. Bioactive aptamers were characterized for affinity, circular dichroism (CD), specificity and sensitivity. The Q-PCR amplification curve increased and the retention rate was about 1% at the eighth round. Use of the AuNPs biosensor and CD analyses determined that six aptamers had binding activity. Affinity analysis showed that aptamer 47 had the highest affinity (Kd = 42.17 ± 8.98 nM) with no cross reactivity to CBL analogs. Indirect competitive enzyme linked aptamer assay (IC-ELAA) based on a 5′-biotin aptamer 47 indicated the limit of detection (LOD) was 0.18 ± 0.02 ng/L (n = 3), and it was used to detect pork samples with a mean recovery of 83.33–97.03%. This is the first report of a universal strategy including library fixation, Q-PCR monitoring, high-throughput sequencing, and AuNPs biosensor identification to select aptamers specific for small molecules.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 217 ◽  
Author(s):  
Guillermo Barturen ◽  
Antonio Rueda ◽  
José L. Oliver ◽  
Michael Hackenberg

Whole genome methylation profiling at a single cytosine resolution is now feasible due to the advent of high-throughput sequencing techniques together with bisulfite treatment of the DNA. To obtain the methylation value of each individual cytosine, the bisulfite-treated sequence reads are first aligned to a reference genome, and then the profiling of the methylation levels is done from the alignments. A huge effort has been made to quickly and correctly align the reads and many different algorithms and programs to do this have been created. However, the second step is just as crucial and non-trivial, but much less attention has been paid to the final inference of the methylation states. Important error sources do exist, such as sequencing errors, bisulfite failure, clonal reads, and single nucleotide variants.We developed MethylExtract, a user friendly tool to: i) generate high quality, whole genome methylation maps and ii) detect sequence variation within the same sample preparation. The program is implemented into a single script and takes into account all major error sources. MethylExtract detects variation (SNVs – Single Nucleotide Variants) in a similar way to VarScan, a very sensitive method extensively used in SNV and genotype calling based on non-bisulfite-treated reads. The usefulness of MethylExtract is shown by means of extensive benchmarking based on artificial bisulfite-treated reads and a comparison to a recently published method, called Bis-SNP.MethylExtract is able to detect SNVs within High-Throughput Sequencing experiments of bisulfite treated DNA at the same time as it generates high quality methylation maps. This simultaneous detection of DNA methylation and sequence variation is crucial for many downstream analyses, for example when deciphering the impact of SNVs on differential methylation. An exclusive feature of MethylExtract, in comparison with existing software, is the possibility to assess the bisulfite failure in a statistical way. The source code, tutorial and artificial bisulfite datasets are available at http://bioinfo2.ugr.es/MethylExtract/ and http://sourceforge.net/projects/methylextract/, and also permanently accessible from 10.5281/zenodo.7144.


2019 ◽  
Author(s):  
Markus Nevil ◽  
Tyler J. Gibson ◽  
Constantine Bartolutti ◽  
Anusha Iyengar ◽  
Melissa M Harrison

AbstractThe dramatic changes in gene expression required for development necessitate the establishment of cis-regulatory modules defined by regions of accessible chromatin. Pioneer transcription factors have the unique property of binding closed chromatin and facilitating the establishment of these accessible regions. Nonetheless, much of how pioneer transcription factors coordinate changes in chromatin accessibility during development remains unknown. To determine whether pioneer-factor function is intrinsic to the protein or whether pioneering activity is developmentally modulated, we studied the highly conserved, essential transcription factor, Grainy head (Grh). Grh is expressed throughout Drosophila development and functions as a pioneer factor in the larvae. We demonstrated that Grh remains bound to condensed mitotic chromosomes, a property shared with other pioneer factors. By assaying chromatin accessibility in embryos lacking either maternal or zygotic Grh at three stages of development, we discovered that Grh is not required for chromatin accessibility in early embryogenesis, in contrast to its essential functions later in development. Our data reveal that the pioneering activity of Grh is temporally regulated and is likely influenced by additional factors expressed at a given developmental stage.


2019 ◽  
Author(s):  
Ayman Yousif ◽  
Nizar Drou ◽  
Jillian Rowe ◽  
Mohammed Khalfan ◽  
Kristin C Gunsalus

AbstractBackgroundAs high-throughput sequencing applications continue to evolve, the rapid growth in quantity and variety of sequence-based data calls for the development of new software libraries and tools for data analysis and visualization. Often, effective use of these tools requires computational skills beyond those of many researchers. To ease this computational barrier, we have created a dynamic web-based platform, NASQAR (Nucleic Acid SeQuence Analysis Resource).ResultsNASQAR offers a collection of custom and publicly available open-source web applications that make extensive use of a variety of R packages to provide interactive data analysis and visualization. The platform is publicly accessible at http://nasqar.abudhabi.nyu.edu/. Open-source code is on GitHub at https://github.com/nasqar/NASQAR, and the system is also available as a Docker image at https://hub.docker.com/r/aymanm/nasqarall. NASQAR is a collaboration between the core bioinformatics teams of the NYU Abu Dhabi and NYU New York Centers for Genomics and Systems Biology.ConclusionsNASQAR empowers non-programming experts with a versatile and intuitive toolbox to easily and efficiently explore, analyze, and visualize their Transcriptomics data interactively. Popular tools for a variety of applications are currently available, including Transcriptome Data Preprocessing, RNA-seq Analysis (including Single-cell RNA-seq), Metagenomics, and Gene Enrichment.


2020 ◽  
Author(s):  
Hua-Lin Huang ◽  
Shikui Yin ◽  
Huifang Zhao ◽  
Chao Tian ◽  
Jufang Huang ◽  
...  

AbstractMawangdui ancient Cadaver is the first wet corpse found in the world, which is famous for being immortal for over two thousands of years. After being unearthed, the female corpse was immersed in the formalin protective solution for more than 40 years. We used magnetic bead method and formalin fixed paraffing (FFPE) method to extract the DNA of the female corpse, respectively. PCR amplification, sanger sequencing, library building, high throughput sequencing (testing) and data processing were carried out on the DNA samples, and about 0.5% of the whole genome coverage sequencing data was obtained. Comparing the results of DNA trough two extraction and sequencing methods. We found that the FFPE and high throughput sequencing methods is better than others for DNA extraction of the ancient samples which were preserved in formalin, providing a guidance for dealing with formalin preserved ancient samples in the future.


Sign in / Sign up

Export Citation Format

Share Document