scholarly journals Simple propagation method for resident macrophages by co-culture and subculture, and their isolation from various organs

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Kazushige Ogawa ◽  
Mayu Tsurutani ◽  
Aya Hashimoto ◽  
Miharu Soeda

Abstract Background Resident macrophages (Mø) originating from yolk sac Mø and/or foetal monocytes colonise tissues/organs during embryonic development. They persist into adulthood by self-renewal at a steady state, independent of adult monocyte inputs, except for those in the intestines and dermis. Thus, many resident Mø can be propagated in vitro under optimal conditions; however, there are no specific in vitro culture methods available for the propagation of resident Mø from diverse tissues/organs. Results We provided a simple method for propagating resident Mø derived from the liver, spleen, lung, and brain of ICR male mice by co-culture and subculture along with the propagation of other stromal cells of the respective organs in standard culture media and successfully demonstrated the propagation of resident Mø colonising these organs. We also proposed a simple method for segregating Mø from stromal cells according to their adhesive property on bacteriological Petri dishes, which enabled the collection of more than 97.6% of the resident Mø from each organ. Expression analyses of conventional Mø markers by flow cytometry showed similar expression patterns among the Mø collected from the organs. Conclusion This is the first study to clearly provide a practical Mø propagation method applicable to resident Mø of diverse tissues and organs. Thus, this novel practical Mø propagation method can offer broad applications for the use of resident Mø of diverse tissues and organs.

Author(s):  
Alfabetian Harjuno Condro Haditomo ◽  
Angela Mariana Lusiastuti ◽  
Widanarni Widanarni

ABSTRAK   Pengendalian penyakit bakterial yang umum dilakukan dengan pemakaian antibiotik atau  bahan kimia sudah tidak diperbolehkan lagi karena menimbulkan patogen yang resisten  terhadap bahan kimia tersebut, terlebih jika penggunaan tidak sesuai dengan anjuran yang diberikan. Dampak negatif terhadap kesehatan konsumen berupa residu antibiotik juga menjadi pertimbangan yang harus diperhatikan. Manipulasi terhadap populasi mikroba yang berada di perairan guna pencegahan sebelum terjadinya serangan bakteri yang bersifat mematikan perlu dilakukan sebagaimana konsep probiotik sebagai biokontrol. Tujuan penelitian ini adalah menguji kandidat probiotik dalam menekan atau menghambat bakteri patogen Aeromonas hydrophila. Penelitian ini dilaksananakan dalam dua tahap. Tahap pertama adalah tahap pengujian bakteri kandidat probiotik secara in vitro menggunakan metode zona hambat dan kultur bersama pada media agar.  Tahap kedua adalah uji tentang bakteri kandidat probiotik dengan patogen pada media budidaya. Hasil terbaik penelitian tahap pertama pada  uji kultur bersama antara kandidat probiotik B. firmus dengan A. hydrophila pada skala in vitro adalah dengan penambahan probiotik  B. firmus sebanyak 108 cfu/ml. Sedangkan pada penelitian tahap kedua didapatkan hasil berturut-turut perlakuan D dengan tingkat kelangsungan hidup (SR) mencapai 90%, perlakuan C dengan SR 75%, perlakuan A dengan SR 50% dan perlakuan K dengan SR 50%.   Kata kunci: Bacillus firmus, probiotik, Aeromonas hydrophila, media budidaya   ABSTRACT  Controlling bacterial disease with the use of antibiotics or chemicals is no longer allowed as it results in pathogens that are resistant to the chemicals, especially when not in accordance with the recommendations provided. The negative impactsof the antibiotics residues on the consumers’ health  also need to be considered. Manipulation of microbial populations present in the waters as preventation before the lethal attack of bacteria needs to be done which is in accordance with the concept of probiotics as biocontrol.The purpose of this study was to test the probiotic candidates in suppressing or inhibiting pathogenic bacteria Aeromonas hydrophila. This study was conducted in two stages. The first stage was to test a candidate probiotic bacteria in vitro using culture methods and inhibition zone on the media together. The second stage wasto test candidate probiotic bacteria to pathogens on the cultivation media. The best results in the first phase of the research is shared culture test between probiotic candidate B. FIRMUS with A. hydrophila on vitro scale is the addition of the probiotic B. FIRMUS 108 cfu / ml. While in the second phase of the research results obtained successively: treatment D with a survival rate (SR) reaches 90%, treatment C with SR 75%, treatment A with SR 50% and treatment K with SR 50%. Keywords: Bacillus FIRMUS, probiotics, Aeromonas hydrophila, media cultivation


2021 ◽  
Author(s):  
Christine Poon

AbstractArthroplasty implants e.g. hip, knee, spinal disc sustain relatively high compressive loading and friction wear, which lead to the formation of wear particles or debris between articulating surfaces. Despite advances in orthopaedic materials and surface treatments, the production of wear debris from any part of a joint arthroplasty implant is currently unavoidable. Implant wear debris induces host immune responses and inflammation, which causes patient pain and ultimately implant failure through progressive inflammation-mediated osteolysis and implant loosening, where the severity and rate of periprosthetic osteolysis depends on the material and physicochemical characteristics of the wear particles. Evaluating the cytotoxicity of implant wear particles is important for regulatory approved clinical application of arthroplasty implants, as is the study of cell-particle response pathways. However, the wear particles of polymeric materials commonly used for arthroplasty implants tend to float when placed in culture media, which limits their contact with cell cultures. This study reports a simple means of suspending wear particles in liquid medium using sodium carboxymethyl cellulose (NaCMC) to provide a more realistic proxy of the interaction between cells and tissues to wear particles in vivo, which are free-floating in synovial fluid within the joint cavity. Low concentrations of NaCMC dissolved in culture medium were found to be effective for suspending polymeric wear particles. Such suspensions may be used as more physiologically-relevant means for testing cellular responses to implant wear debris, as well as studying the combinative effects of shear and wear particle abrasion on cells in a dynamic culture environments such as perfused tissue-on-chip devices.


2007 ◽  
Vol 19 (1) ◽  
pp. 210
Author(s):  
D. M. Kohl ◽  
R. L. Monson ◽  
L. E. Enwall ◽  
J. J. Rutledge

Assessment of morphological stage grade is a subjective procedure. Stage grade is of vital importance to, among other things, recipient synchrony for the purpose of establishing successful pregnancies. Asynchronous embryo transfer has led to decreases in pregnancy rates (Farin et al. 1995 Biol. Reprod. 52, 676–682) and has been implicated in contributing to large offspring syndrome (Young et al. 1996 Theriogenology 45, 231). Differences in embryo kinetics based on culture conditions have been well documented (Mello et al. 2005 Reprod. Fert. Dev. 17, 221 abst). Whether such differences are the result of species, breed, metabolic stress, sire effects, or separation from an in vivo environment has yet to be determined. The correlation between oxygen respiration rates and embryo morphology as well as embryo diameter in bovine embryos produced in vitro has shown promise in the development of a more objective predictor of embryo quality and perhaps pregnancy initiation (Lopes et al. 2005 Reprod. Fert. Dev. 17, 151 abst). As well, recent examination of gene expression patterns of in vitro-derived bovine embryos seems to indicate that longer periods of in vitro culture are associated with lower rates of embryo survival (Lonergan et al. 2006 Theriogenology 65, 137–152). We hypothesize that differences do exist in the number, rate, and morphological appearance of blastocysts and that these parameters are in large part based on culture conditions in vitro. The objective of this experiment was to determine the timing and distribution of blastocyst formation of in vitro-produced bovine embryos cultured in SOF8, CR18AA, and KSOM8, under a standard incubation environment. Bovine ovaries from a local abattoir were aspirated and matured for 18-22. Oocytes were fertilized with frozen-thawed Percoll-separated semen from a Holstein bull. Presumptive zygotes were vortexed to remove cumulus cells and placed into 3 different culture media in a highly humidified atmosphere containing 20% oxygen, 5% carbon dioxide, and compressed air at 38.5�C. Embryos were evaluated specifically at 168 h post-insemination (Day 7) and assigned a morphological stage grade (IETS) to determine fixed time point differences. A total of 6 complete replicates were performed. Only embryos exhibiting the presence of a blastocoel at this time were documented (early blast, mid-blast, expanded blast). At 168 h post-insemination, there were no significant differences in the total number of embryos reaching early or mid-blast stage in any of the media. However, chi-square analysis revealed an increase in the number of expanded blastocysts in SOF (n = 813) and CR1 (n = 838) treatments compared to KSOM (n = 824; P < 0.0001). Expanded blastocysts in SOF were also greater in number than in CR1 (P < 0.05). Embryo selection based on development to the expanded blastocyst stage on Day 7 may prove useful in increasing pregnancy rates, and may validate qualitative correlations based on oxygen consumption and gene expression profiles for embryos produced in vitro.


2020 ◽  
Vol 103 (3) ◽  
pp. 455-470
Author(s):  
Leah E Simon ◽  
T Rajendra Kumar ◽  
Francesca E Duncan

Abstract Folliculogenesis is a complex process that requires integration of autocrine, paracrine, and endocrine factors together with tightly regulated interactions between granulosa cells and oocytes for the growth and survival of healthy follicles. Culture of ovarian follicles is a powerful approach for investigating folliculogenesis and oogenesis in a tightly controlled environment. This method has not only enabled unprecedented insight into the fundamental biology of follicle development but also has far-reaching translational applications, including in fertility preservation for women whose ovarian follicles may be damaged by disease or its treatment or in wildlife conservation. Two- and three-dimensional follicle culture systems have been developed and are rapidly evolving. It is clear from a review of the literature on isolated follicle culture methods published over the past two decades (1980–2018) that protocols vary with respect to species examined, follicle isolation methods, culture techniques, culture media and nutrient and hormone supplementation, and experimental endpoints. Here we review the heterogeneity among these major variables of follicle culture protocols.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3884-3884
Author(s):  
Marieke Goedhart ◽  
Anne Cornelissen ◽  
Carlijn Kuijk ◽  
Sulima Geerman ◽  
Fernanda Pascutti ◽  
...  

Abstract Maintenance of hematopoietic stem cells (HSCs) and regulation of their quiescence and self-renewal is critical for maintaining a lifelong supply of blood cells. The ability of HSCs to stay quiescent is thought to depend on their specific niche in the bone marrow (BM). Mesenchymal stromal cells (MSC) in the BM are multipotent stem cells that form part of the vascular HSC niche and provide micro-environmental support to HSCs both in vivo and upon expansion ex vivo. Culture-expanded MSCs also exhibit immunomodulatory properties that can be enhanced by pre-treatment with interferon-gamma (IFN-γ). BM MSC are thus attractive candidates for cellular therapy after hematopoietic stem cell transplantation, for promoting rapid hematopoietic recovery and reducing the incidence or severity of graft versus host disease. Although IFN-γ pre-treatment can improve the immunomodulatory properties of MSCs, elevated IFN-γ levels have also been associated with anemia and BM failure in multiple chronic inflammatory diseases. While the impact of IFN-γ on HSC has been elucidated in recent years, it remains largely unknown whether IFN-γ can also influence hematopoietic support by BM stromal cells. In this study, we aim to elucidate the impact of IFN-γ on hematopoietic support of BM MSC. We show that in vitro expansion of primary BM MSC cultures from healthy donors was significantly reduced in the presence of IFN-γ, and this effect could be reproduced in the BM stromal cell line MS-5. Concurrently, IFN-γ diminished the clonal capacity of BM MSC, as measured by CFU-F assays. In addition, BM MSC that were pre-stimulated with IFN-γ produced significantly lower levels of CXCL12, suggesting a loss of hematopoietic support potential. Indeed, support of CD34+ hematopoietic stem and progenitor cells (HSPC) in a co-culture assay was greatly reduced in when MSC were pre-treated with IFN-γ. To determine the impact of IFN-γ on BM MSC in vivo, we investigated the BM stromal compartment of IFN-γ AU-rich element deleted (ARE-Del) mice, which constitutively express IFN-γ in steady state conditions. FACS analysis revealed a remodeling of the BM stromal compartment in ARE-Del mice compared to littermate controls, with significantly fewer MSCs, identified as CD45-Ter119-CD31-CD51+PDGFRa+ cells. Numbers of other stromal cell subsets, such as osteoblasts and fibroblasts, were not altered. The reduction of BM MSC in ARE-Del mice coincided with a loss of quiescence in HSCs; only 35% of long term HSC (LT-HSC) in ARE-Del mice were quiescent, compared to 70% in WT mice, as determined by Ki-67 staining. Loss of quiescence in LT-HSC did not lead to increased self-renewal, but rather induced increased differentiation towards short-term HSC and multi-potent progenitors. We then sorted LT-HSC from WT and ARE-Del mice and performed in vitro HSC culture assays in the absence of IFN-γ. Absolute numbers of LT-HSC were rapidly decreased in ARE-Del compared to WT cultures after 3 and 7 days of HSC culture, while numbers of more differentiated progenitors were increased. These data indicate that an IFN-γ-mediated loss of BM MSC in ARE-Del mice leads to loss of quiescent LT-HSCs and induces a tendency towards HSC differentiation over self-renewal. In conclusion, we have shown that IFN-γ has a negative impact on expansion and hematopoietic support of BM MSC in vitro and in vivo across species. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, it is obvious from our data that IFN-γ impairs their HSC supporting function. These data also provide more insight in the underlying mechanism by which IFN-γ contributes to the pathogenesis of anemia and BM failure. Disclosures No relevant conflicts of interest to declare.


1973 ◽  
Vol 138 (3) ◽  
pp. 574-592 ◽  
Author(s):  
J. D. Broome ◽  
M. W. Jeng

Numerous lines of mouse lymphoid tumors (13 of 22 tested) showed, with increased sensitivity, a property of normal mouse splenic lymphocytes, the potential for growth promotion in vitro by specific thiols added to standard culture media. For lymphoma L1210 (V), structure activity relationships were examined; 9 of 30 thiols promoted growth; the most active was α-thioglycerol, effective at 0.2 µM. Thiols became oxidized under conditions of tissue culture and had half-lives of less than 8 h. Disulfides of active thiols promoted growth of lymphoma cells. The mitogenic response of splenic lymphocytes to lectins was increased by thiols-disulfides which promoted the growth of lymphoma cells, but the response varied with the mitogen preparation used and under some conditions thiols-disulfides were inhibitory.


Endocrinology ◽  
2020 ◽  
Vol 161 (6) ◽  
Author(s):  
Maiko Kakita-Kobayashi ◽  
Hiromi Murata ◽  
Akemi Nishigaki ◽  
Yoshiko Hashimoto ◽  
Shinnosuke Komiya ◽  
...  

Abstract Endometrial stromal cells differentiate into decidual cells through the process of decidualization. This differentiation is critical for embryo implantation and the successful establishment of pregnancy. Recent epidemiological studies have suggested that thyroid hormone is important in the endometrium during implantation, and it is commonly believed that thyroid hormone is essential for proper development, differentiation, growth, and metabolism. This study aimed to investigate the impact of thyroid hormone on decidualization in human endometrial stromal cells (hESCs) and define its physiological roles in vitro by gene targeting. To identify the expression patterns of thyroid hormone, we performed gene expression profiling of hESCs during decidualization after treating them with the thyroid hormone levothyroxine (LT4). A major increase in decidual response was observed after combined treatment with ovarian steroid hormones and thyroid hormone. Moreover, LT4 treatment also affected the regulation of many transcription factors important for decidualization. We found that type 3 deiodinase, which is particularly important in fetal and placental tissues, was upregulated during decidualization in the presence of thyroid hormone. Further, it was observed that progesterone receptor, an ovarian steroid hormone receptor, was involved in thyroid hormone–induced decidualization. In the absence of thyroid hormone receptor (TR), due to the simultaneous silencing of TRα and TRβ, thyroid hormone expression was unchanged during decidualization. In summary, we demonstrated that thyroid hormone is essential for decidualization in the endometrium. This is the first in vitro study to find impaired decidualization as a possible cause of infertility in subclinical hypothyroidism (SCH) patients.


2014 ◽  
Vol 26 (1) ◽  
pp. 157
Author(s):  
S. Ikeda

In order to investigate the effects of bioactive lipophilic nutrients on mammalian pre-implantation embryos in vitro, amphipathic vehicles are commonly used to dissolve the lipophilic substances into culture media. However, easy emulsification of these nutrients would facilitate medium preparation. We report here a simple method for emulsification of lipophilic nutrients that affect bovine pre-implantation embryonic development in vitro. We investigated the effects of emulsified oleic acid (OA) or a mixture of antioxidative vitamins – vitamin E (VE) and β-carotene (BC). Polyglyceryl-10 laurate (P10L) was used as an emulsifier and was dissolved in sterile water at 5.05% (wt/wt) in glass vials. One percent (wt/wt) of OA or a mixture of VE (α-tocopherol) and BC (VE : BC = 1000 : 1 wt/wt) was added into the vial and mixed by using a magnetic stirrer. After first exhibiting white turbidity, the solution became transparent and stabilised, indicating stable emulsification. The emulsified OA and VE+BC were designated as emOA and emVEBC, respectively. Cumulus-enclosed oocytes obtained from abattoir bovine ovaries were in vitro-matured (IVM) for 22 h in modified synthetic oviduct fluid (mSOF) supplemented with 10% (vol/vol) fetal calf serum and 0.2 IU mL–1 FSH. After IVM, the oocytes were subjected to IVF with Percoll gradient-selected sperm from a single bull in an mSOF-based medium for 20 h. After IVF, presumptive zygotes were freed from the cumulus cells and cultured in mSOF. On Day 3 (IVF = Day 0), embryos that had developed to the 8-cell stage or more (≥8-cell) were subsequently cultured in medium supplemented with 0.05% (vol/vol) of emOA or emVEBC. Blastocyst development from ≥8-cell embryos was assessed on Day 8. In the case of no-additive control and emVEBC, the hatching rate was also assessed on Day 10. All the cultures were performed at 38.5°C under 5% CO2, 5% O2, and 90% N2 and replicated 4 times with ~18 embryos per group per replicate. The development data were statistically analysed by the general linear model. The blastocyst rate in the emOA group (36.4%) was significantly (P < 0.05) lower than that in the no-additive control (54.1%). The blastocyst rate in the emVEBC group (53.9%) was similar to that in the control; however, the hatching rate was significantly higher in the emVEBC group (22.6%) than in the control (9.2%). These data suggest that emulsification of lipophilic nutrients with P10L is an easy method to allow their addition into culture media for investigating their favourable (e.g. antioxidative vitamins) or inhibitory (e.g. OA) effects on pre-implantation development in vitro.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4046-4046
Author(s):  
Katsuya Ikuta ◽  
Takaaki Hosoki ◽  
Yasushi Shimonaka ◽  
Yusuke Sasaki ◽  
Hideyuki Yasuno ◽  
...  

Abstract Abstract 4046 Poster Board III-981 Introduction and aim Hepcidin is a key molecule of body iron metabolism, and the expression at mRNA level is thought to be upregulated by iron loading. As the mature processed form of human hepcidin is known to have 3 isoforms, hepcidin -20, -22, and -25, and hepcidin -25 is thought to be the major isoform active in iron metabolism. However, the physiological roles of other isoforms are poorly understood. Concerning the study on the regulatory mechanism on hepcidin expression, most studies have been only performed at the transcriptional level because of the difficulty of quantification of hepcidin in cell culture media; therefore, the experiments in vitro would be valuable. We therefore developed a sensitive new method for measuring hepcidin that can simultaneously measure the isoforms in culture media, and studied the expression patterns of isoforms at mature protein level in various human hepatoma-derived cell lines with and without diferric transferrin. Methods Quantification of human hepcidin -20, -22, -25 was performed using liquid chromatography (LC) - tandem mass spectrometry (MS) which we newly developed. Selected reaction monitoring (SRM) transitions and the collision energies were settled for each isoform respectively. Quantification of hepcidin isoforms in culture medium of 13 strains of hepatoma-derived cell lines was performed. Various stimulants for hepcidin expression, such as interleukin-6, diferric transferrin and etc, were also used for investigating the response patterns of hepcidin isoforms. Results Upon optimization of SRM conditions, the most intense precursor ions were selected in each mass spectrum to detect hepcidin isoforms. Product ions were selected to maximize sensitivity and selectivity. Despite using culture media including 10% FBS as matrix, isoform peaks were not interfered with by a blank matrix, indicating the method has good selectivity. Calibration curves were constructed over the range 2-1,000 ng/mL, and linearity of the calibration curves by weighted (1/x2) linear regression was excellent (correlation coefficient: r=0.9974 for hepcidin-20, r=0.9937 for hepcidin-22, r=0.9950 for hepcidin-25). Accuracies for back-corrected concentrations were 99.7-122.1% for hepcidin-20, 102.6-132.5% for hepcidin-22, and 99.1-141.2% for hepcidin-25. These results indicate that the method is adequate for quantifying hepcidin isoforms in culture media. We also found that substantial difference of hepcidin isoforms' expression patterns among human hepatoma-derived cell lines, and the patterns were divided into 5 groups. Response patterns for various stimulants were also different among those groups. Especially, human diferric transferrin upregulates hepcidin-20 and -22 in WRL68 cells, and hepcidin-22 in Hep3B, HuH-2, HuH-4, and HuH-6 cells; this should be the first report that human diferric transferrin upregulates hepcidin isoforms other than hepcidin-25 in human hepatocyte-derived cells. Conclusions We have devised a novel method for simultaneous quantification of hepcidin isoforms in culture media. Although most previous studies only observe the changes of hepcidin expression at mRNA level, our method revealed heterogeneous expressions of hepcidin isoforms and hepcidin upregulation by human diferric transferrin in human hepatocyte-derived cells at the peptide level. The fact of hepcidin isoforms' upregulation by human diferric transferrin in human hepatocyte-derived cells might be the clue to elucidate the mechanism for iron sensor in human body. We believe that this novel quantification method can contribute to further progress, especially in vitro research on the regulation of hepcidin expression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 567-567
Author(s):  
Leslie A Crews ◽  
Larissa Balaian ◽  
Heather Leu ◽  
Nathaniel Delos Santos ◽  
Angela C Court ◽  
...  

Abstract Introduction Disease relapse is the leading cause of death in secondary AML (sAML), which evolves from antecedent hematologic disorders like myelodysplastic syndrome (MDS) or myeloproliferative neoplasms (MPNs) or following exposure to chemotherapy. Persistence of therapy-resistant leukemia stem cells (LSC) harboring enhanced survival and self-renewal capacity has been linked to high relapse rates in sAML. Previously, we showed that missplicing of a stem cell regulatory gene, GSK3 b, and splice isoform switching favoring pro-survival BCL2 family isoform expression promoted generation of therapy-resistant LSC (Abrahamsson et al PNAS 2009; Goff et al Cell Stem Cell 2013). However, whether aberrant pre-mRNA splicing promotes sAML LSC generation, in the absence of mutation, and if pharmacological splicing modulation impairs LSC maintenance, in a mutation-independent manner, has not been elucidated. Methods and Results Comparative RNA-sequencing and gene set enrichment analyses revealed significant alterations in splicing factor gene expression in purified progenitors from untreated sAML compared with normal samples. In addition, using an isoform-specific alignment algorithm, we established a sAML LSC splice isoform expression signature that identified increased expression of select transcripts, e.g. CD82 and PTK2B. Thus, we investigated the LSC inhibitory efficacy of a stable, potent splicing modulatory agent, 17S -FD-895, in humanized AML LSC stromal co-culture and primagraft assays. Notably, there was a dose-dependent reduction in AML LSC (n=4) survival and self-renewal after in vitro 17S -FD-895 treatment, with a favorable therapeutic index compared to normal controls (n=3, p<0.01). Splicing reporter activity and PCR analyses revealed rapid and potent 17S -FD-895-induced alterations in splicing, promoting pro-apoptotic isoform expression and intron inclusion in the stem cell regulatory gene MCL1. Also, 17S -FD-895 restored normal expression patterns of PTK2B, and MCL1-L/S and BLC2-L/S expression ratios. Flow cytometric analyses in AML LSC primagraft models treated with 17S -FD-895 (5-10 mg/kg delivered intravenously in 3 doses over 2 weeks) revealed a decrease in human stem (CD45+ CD34+ CD38- Lin-, 68% reduction in the spleens of the 10 mg/kg group versus vehicle controls, n=5 mice per group, p<0.05) and progenitor (CD45+ CD34+ CD38+ Lin-, 80% reduction to nearly zero in the spleens of the 10 mg/kg group versus vehicle controls, p=0.08) cell frequencies. Furthermore, MCL1-L/S and BCL2-L/S expression ratios were significantly reduced in LSC-enriched fractions from 17S -FD-895-treated mice compared to vehicle controls. Consistent with a reduction in functional LSC burden after 17S -FD-895 treatment, subsequent serial transplantation studies showed a 47-65% reduction in leukemic burden in the hematopoietic tissues of recipients of CD34+ cells from mice in the 10 mg/kg treatment group versus vehicle controls (n=5 mice per group, p<0.05). Conclusions Here we demonstrate that a potent and stable splicing modulatory agent, 17S -FD-895, normalized sAML-specific splice isoform expression patterns as well as MCL1-L/S and BLC2-L/S ratios. Moreover, pharmacologic splicing modulation reduced AML LSC survival and self-renewal in a dose-dependent manner in both in vitro and in vivo models with a favorable therapeutic index. Further evaluation of this compound as a splicing-targeted single agent or combined with standard of care therapy may reduce or eradicate LSC burden in therapy-resistant sAML. In addition, LSC-specific splice isoforms may represent important biomarkers that could be developed as companion diagnostics for splicing-targeted therapies in sAML and other recalcitrant malignancies. Disclosures Jamieson: Johnson & Johnson: Research Funding; GlaxoSmithKline: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document