scholarly journals Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hong Liu ◽  
Suryasarathi Dasgupta ◽  
Yu Fu ◽  
Brandi Bailey ◽  
Christian Roy ◽  
...  

Abstract Background Myeloid cells, especially mononuclear phagocytes, which include monocytes, macrophages and dendritic cells (DC), play vital roles in innate immunity, and in the initiation and maintenance of adaptive immunity. While T cell-associated activation pathways and cytokines have been identified and evaluated in inflammatory bowel disease (IBD) patients (Neurath, Nat Rev Gastroenterol Hepatol 14:269–78, 1989), the role of mononuclear phagocytes are less understood. Recent reports support the crucial role of DC subsets in the development of acute colitis models (Arimura et al., Mucosal Immunol 10:957–70, 2017), and suggest they may contribute to the pathogenesis of ulcerative colitis (UC) by inducing Th1/Th2/Th17 responses (Matsuno et al., Inflamm Bowel Dis 23:1524–34, 2017). Results We performed in silico analysis and evaluated the enrichment of immune cells, with a focus on mononuclear phagocytes in IBD patient colonic biopsies. Samples were from different gut locations, with different levels of disease severity, and with treatment response to current therapies. We observe enrichment of monocytes, M1 macrophages, activated DCs (aDCs) and plasmacytoid dendritic cells (pDCs) in inflamed tissues from various gut locations. This enrichment correlates with disease severity. Additionally, the same mononuclear phagocytes subsets are among the top enriched cell types in both infliximab and vedolizumab treatment non-responder samples. We further investigated the enrichment of selected DC and monocyte subsets based on gene signatures derived from a DC- and monocyte-focused single cell RNA-seq (scRNA-seq) study (Villani et al., Science 356:eaah4573, 2017), and verified enrichment in both inflamed tissues and those with treatment resistance. Moreover, we validated an increased mononuclear phagocyte subset abundance in a Dextran Sulphate Sodium (DSS) induced colitis model in C57Bl/6 mice representative of chronic inflammation. Conclusions We conducted an extensive analysis of immune cell populations in IBD patient colonic samples and identified enriched subsets of monocytes, macrophages and dendritic cells in inflamed tissues. Understanding how they interact with other immune cells and other cells in the colonic microenvironment such as epithelial and stromal cells will help us to delineate disease pathogenesis.

2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Marisa Vulcano ◽  
María Gabriela Lombardi ◽  
María Elena Sales

Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yong Chen ◽  
Fada Xia ◽  
Bo Jiang ◽  
Wenlong Wang ◽  
Xinying Li

Background: Epigenetic regulation, including DNA methylation, plays a major role in shaping the identity and function of immune cells. Innate and adaptive immune cells recruited into tumor tissues contribute to the formation of the tumor immune microenvironment (TIME), which is closely involved in tumor progression in breast cancer (BC). However, the specific methylation signatures of immune cells have not been thoroughly investigated yet. Additionally, it remains unknown whether immune cells-specific methylation signatures can identify subgroups and stratify the prognosis of BC patients.Methods: DNA methylation profiles of six immune cell types from eight datasets downloaded from the Gene Expression Omnibus were collected to identify immune cell-specific hypermethylation signatures (IC-SHMSs). Univariate and multivariate cox regression analyses were performed using BC data obtained from The Cancer Genome Atlas to identify the prognostic value of these IC-SHMSs. An unsupervised clustering analysis of the IC-SHMSs with prognostic value was performed to categorize BC patients into subgroups. Multiple Cox proportional hazard models were constructed to explore the role of IC-SHMSs and their relationship to clinical characteristics in the risk stratification of BC patients. Integrated discrimination improvement (IDI) was performed to determine whether the improvement of IC-SHMSs on clinical characteristics in risk stratification was statistically significant.Results: A total of 655 IC-SHMSs of six immune cell types were identified. Thirty of them had prognostic value, and 10 showed independent prognostic value. Four subgroups of BC patients, which showed significant heterogeneity in terms of survival prognosis and immune landscape, were identified. The model incorporating nine IC-SHMSs showed similar survival prediction accuracy as the clinical model incorporating age and TNM stage [3-year area under the curve (AUC): 0.793 vs. 0.785; 5-year AUC: 0.735 vs. 0.761]. Adding the IC-SHMSs to the clinical model significantly improved its prediction accuracy in risk stratification (3-year AUC: 0.897; 5-year AUC: 0.856). The results of IDI validated the statistical significance of the improvement (p < 0.05).Conclusions: Our study suggests that IC-SHMSs may serve as signatures of classification and risk stratification in BC. Our findings provide new insights into epigenetic signatures, which may help improve subgroup identification, risk stratification, and treatment management.


2006 ◽  
Vol 84 (6) ◽  
pp. 832-843 ◽  
Author(s):  
Elena A. Ostrakhovitch ◽  
Shawn S.-C. Li

The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi248-vi248
Author(s):  
Peiwen Chen ◽  
Ronald DePinho ◽  
Wang Alan

Abstract Heterotypic interactions across diverse cell types of the tumor microenvironment (TME) can enable tumor progression and offer points for potential therapeutic intervention. Employing Glioblastoma Multiforme (GBM) as a model system, we sought to (i) understand the nature of specific oncogenic signals in glioma cells that affects immune cells, and (ii) identify immune cell factors which may support glioma growth and survival. Combined profiling and functional studies of glioma cells established that PTEN deficiency, a signature GBM alteration, specifically tracks with an immune profile dominated by tumor-associated macrophages (TAMs, a key type of immune cells in GBM which can constitute up to half of the tumor mass) via upregulation of lysyl oxidase (LOX). Mechanistically, the PTEN-SRC/AKT axis regulates YAP1, which directly upregulates LOX expression and secretion in glioma cells via binding to the LOX promoter. The secreted LOX from glioma cells functions as a potent macrophage chemoattractant to promote macrophage recruitment via activation of the beta1 integrin-PYK2 pathway in macrophages. Consequently, these infiltrating macrophages secrete SPP1 (secreted phosphoprotein 1) which sustains glioma cell survival and stimulates angiogenesis. In human and mouse PTEN-null GBM models, but not PTEN-intact GBM models, LOX inhibition markedly inhibits tumor growth and extends the survival of tumor-bearing mice by decreasing macrophage infiltration, impairing SPP1 expression and attenuating angiogenesis. In silico analysis of human GBM shows that increased YAP1-LOX and b1 integrin-SPP1 signaling positively correlates with higher macrophage density and lower overall survival. Together, the symbiotic glioma (PTEN-YAP1-LOX) and macrophage (beta1 integrin-PYK2-SPP1) interactions provide novel therapeutic targets for this intractable disease.


2019 ◽  
Vol 47 (6) ◽  
pp. 1581-1595 ◽  
Author(s):  
Rebecca L. Wallings ◽  
Malú G. Tansey

Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease but are also found in immune-related disorders such as inflammatory bowel disease, tuberculosis and leprosy. LRRK2 is highly expressed in immune cells and has been functionally linked to pathways pertinent to immune cell function, such as cytokine release, autophagy and phagocytosis. Here, we examine the current understanding of the role of LRRK2 kinase activity in pathway regulation in immune cells, drawing upon data from multiple diseases associated with LRRK2 to highlight the pleiotropic effects of LRRK2 in different cell types. We discuss the role of the bona fide LRRK2 substrate, Rab GTPases, in LRRK2 pathway regulation as well as downstream events in the autophagy and inflammatory pathways.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel G. Bunis ◽  
Wanxin Wang ◽  
Júlia Vallvé-Juanico ◽  
Sahar Houshdaran ◽  
Sushmita Sen ◽  
...  

The uterine lining (endometrium) exhibits a pro-inflammatory phenotype in women with endometriosis, resulting in pain, infertility, and poor pregnancy outcomes. The full complement of cell types contributing to this phenotype has yet to be identified, as most studies have focused on bulk tissue or select cell populations. Herein, through integrating whole-tissue deconvolution and single-cell RNAseq, we comprehensively characterized immune and nonimmune cell types in the endometrium of women with or without disease and their dynamic changes across the menstrual cycle. We designed metrics to evaluate specificity of deconvolution signatures that resulted in single-cell identification of 13 novel signatures for immune cell subtypes in healthy endometrium. Guided by statistical metrics, we identified contributions of endometrial epithelial, endothelial, plasmacytoid dendritic cells, classical dendritic cells, monocytes, macrophages, and granulocytes to the endometrial pro-inflammatory phenotype, underscoring roles for nonimmune as well as immune cells to the dysfunctionality of this tissue.


2020 ◽  
Vol 21 (6) ◽  
pp. 1954 ◽  
Author(s):  
Sabbir Khan ◽  
Sandeep Mittal ◽  
Kain McGee ◽  
Kristin D. Alfaro-Munoz ◽  
Nazanin Majd ◽  
...  

Recent efforts in brain tumor research have been directed towards the modulation of the immune system for therapeutic interventions. Several human cancers, including gliomas, are infiltrated with immune cell types—including neutrophils and myeloid-derived suppressor cells—that contribute to tumor progression, invasiveness, and treatment resistance. The role of tumor-associated neutrophils and myeloid-derived suppressor cells in cancer biology remains elusive, as these cells can exert a multitude of pro-tumor and antitumor effects. In this review, we provide the current understanding and novel insights on the role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance, as well as the mechanisms of pleiotropic behaviors in these cells during disease progression, with an emphasis on possible strategies to reprogram these cells towards their antitumor actions.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Meng-ge Yang ◽  
Li Sun ◽  
Jinming Han ◽  
Chao Zheng ◽  
Hudong Liang ◽  
...  

AbstractTranscription factor RelB is a member of the nuclear factror-kappa B (NF-κB) family, which plays a crucial role in mediating immune responses. Plenty of studies have demonstrated that RelB actively contributes to lymphoid organ development, dendritic cells maturation and function and T cells differentiation, as well as B cell development and survival. RelB deficiency may cause a variety of immunological disorders in both mice and humans. Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system which involves a board of immune cell populations. Thereby, RelB may exert an impact on MS by modulating the functions of dendritic cells and the differentiation of T cells and B cells. Despite intensive research, the role of RelB in MS and its animal model, experimental autoimmune encephalomyelitis, is still unclear. Herein, we give an overview of the biological characters of RelB, summarize the updated knowledge regarding the role of RelB in different cell types that contribute to MS pathogenesis and discuss the potential RelB-targeted therapeutic implications for MS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikrant Rai ◽  
Megan B. Wood ◽  
Hao Feng ◽  
Nathan. M. Schabla ◽  
Shu Tu ◽  
...  

Abstract Cells of the immune system are present in the adult cochlea and respond to damage caused by noise exposure. However, the types of immune cells involved and their locations within the cochlea are unclear. We used flow cytometry and immunostaining to reveal the heterogeneity of the immune cells in the cochlea and validated the presence of immune cell gene expression by analyzing existing single-cell RNA-sequencing (scRNAseq) data. We demonstrate that cell types of both the innate and adaptive immune system are present in the cochlea. In response to noise damage, immune cells increase in number. B, T, NK, and myeloid cells (macrophages and neutrophils) are the predominant immune cells present. Interestingly, immune cells appear to respond to noise damage by infiltrating the organ of Corti. Our studies highlight the need to further understand the role of these immune cells within the cochlea after noise exposure.


2022 ◽  
Author(s):  
Benjamin Stewart ◽  
Martin Fergie ◽  
Matthew Young ◽  
Claire Jones ◽  
Ashwin Sachdeva ◽  
...  

Abstract Although a lymph node infiltrated by classic Hodgkin lymphoma is mostly composed of non-neoplastic immune cells, the malignant Hodgkin Reed-Sternberg cells (HRSC) successfully suppress an anti-tumor immune response, to create a cancer-permissive microenvironment. Accordingly, unleashing the dormant immune cells, for example by checkpoint inhibition, has been a central focus of recent therapeutic advances for this disease. Here, we profiled the global immune cell composition of normal and diseased lymph nodes by single-cell RNA sequencing, as a basis for interrogating the immediate vicinity of HRSC, first regionally and then at cellular resolution. Our analyses revealed specific immune cells and functional states associated with HRSC. Most prominently, we discovered a non-random spatial association of immunoregulatory mononuclear phagocytes positioned around HRSC, which express the immune checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO1. These findings provide a basis for rational targeting and activation of the anti-tumor immune response in classic Hodgkin lymphoma.


Sign in / Sign up

Export Citation Format

Share Document