scholarly journals Bacterial community in saline farmland soil on the Tibetan plateau: responding to salinization while resisting extreme environments

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Qiang Li ◽  
Ying Hui Chai ◽  
Xu Sheng Wang ◽  
Li Ying Huang ◽  
Xi Ming Luo ◽  
...  

Abstract Background Salinization damages the health of soil systems and reduces crop yields. Responses of microbial communities to salinized soils and their functional maintenance under high salt stress are valuable scientific problems. Meanwhile, the microbial community of the salinized soil in the plateau environment is less understood. Here, we applied metagenomics technology to reveal the structure and function of microorganisms in salinized soil of the Tibetan Plateau. Results The diversity of composition and function of microbial community in saline soil have changed significantly. The abundances of chemoautotrophic and acidophilic bacteria comprising Rhodanobacter, Acidobacterium, Candidatus Nitrosotalea, and Candidatus Koribacter were significantly higher in saline soil. The potential degradation of organic carbon in the saline soil, as well as the production of NO and N2O via denitrification, and the production of sulfate by sulfur oxidation were significantly higher than the non-saline soil. Both types of soils were rich in genes encoding resistance to environmental stresses (i.e., cold, ultraviolet light, and hypoxia in Tibetan Plateau). The resistance of the soil microbial communities to the saline environment is based on the absorption of K+ as the main mechanism, with cross-protection proteins and absorption buffer molecules as auxiliary mechanisms in our study area. Network analysis showed that functional group comprising chemoautotrophic and acidophilic bacteria had significant positive correlations with electrical conductivity and total sulfur, and significant negative correlations with the total organic carbon, pH, and available nitrogen. The soil moisture, pH, and electrical conductivity are likely to affect the bacterial carbon, nitrogen, and sulfur cycles. Conclusions These results indicate that the specific environment of the Tibetan Plateau and salinization jointly shape the structure and function of the soil bacterial community, and that the bacterial communities respond to complex and harsh living conditions. In addition, environmental feedback probably exacerbates greenhouse gas emissions and accelerates the reduction in the soil pH. This study will provide insights into the microbial responses to soil salinization and the potential ecological risks in the special plateau environment.

2021 ◽  
Author(s):  
Yiqiang Li ◽  
XUsheng Wang ◽  
Yinghui Chai ◽  
Liying Huang ◽  
Ximing Luo ◽  
...  

Abstract Background: Soil salinization caused by irrigation will reduce soil health and crop yields. Soil salinization has become one of the world's soil degradation problems. There are few studies on the response of microbial communities to soil salinization in plateau environments. Here, we applied metagenomics technology to make an exploration on the salinized soil microorganisms of the Tibetan Plateau.Results: The metagenomic data results show that the microbial species diversity and genome diversity of saline soil and non-saline soil have changed significantly. we found that the abundances of chemoautotrophic and acidophilic bacteria comprising Rhodanobacter, Acidobacterium, Candidatus Nitrosotalea, and Candidatus Koribacter were significantly higher in saline soil. and the potential degradation of organic carbon in saline soil. The potential degradation of organic carbon in the saline soil, as well as the production of NO and N2O via denitrification, and the production of sulfate by sulfur oxidation were significantly higher compared with the non-saline soil. Both types of soils were rich in genes encoding resistance to environmental stresses (i.e., cold, ultraviolet light, and hypoxia). The resistance of the soil microbial communities to the saline environment on the Tibetan Plateau is based on the absorption of K+ as the main mechanism, with cross-protection proteins and absorption buffer molecules as auxiliary mechanisms. Network analysis showed that functional group comprising chemoautotrophic and acidophilic bacteria had significant positive correlations with electrical conductivity and total sulfur, and significant negative correlations with the total organic carbon, pH, and available nitrogen. The soil moisture, pH, and electrical conductivity are likely to affect the bacterial carbon, nitrogen, and sulfur cycles.Conclusions: These results indicate that the specific environment of the Tibetan Plateau and salinization jointly shape the structure and function of the soil bacterial community, and that the bacterial communities respond to complex and harsh living conditions. In addition, environmental feedback probably exacerbates greenhouse gas emissions and accelerates the reduction in the soil pH. This study will provide insights into the microbial response to soil salinization and the potential ecological risks for the special plateau environment.


2017 ◽  
Author(s):  
Charley J. Hubbard ◽  
Marcus T. Brock ◽  
Linda T.A. van Diepen ◽  
Loïs Maignien ◽  
Brent E. Ewers ◽  
...  

AbstractPlants alter chemical and physical properties of soil, and thereby influence rhizosphere microbial community structure. The structure of microbial communities may in turn affect plant performance. Yet, outside of simple systems with pairwise interacting partners, the plant genetic pathways that influence microbial community structure remain largely unknown, as are the performance feedbacks of microbial communities selected by the host plant genotype. We investigated the role of the plant circadian clock in shaping rhizosphere community structure and function. We performed 16S rRNA gene sequencing to characterize rhizosphere bacterial communities of Arabidopsis thaliana between day and night time points, and tested for differences in community structure between wild-type (Ws) vs. clock mutant (toc1-21, ztl-30) genotypes. We then characterized microbial community function, by growing wild-type plants in soils with an overstory history of Ws, toc1-21 or ztl-30 and measuring plant performance. We observed that rhizosphere community structure varied between day and night time points, and clock misfunction significantly altered rhizosphere communities. Finally, wild-type plants germinated earlier and were larger when inoculated with soils having an overstory history of wild-type in comparison to clock mutant genotypes. Our findings suggest the circadian clock of the plant host influences rhizosphere community structure and function.


2020 ◽  
Author(s):  
Saeed Keshani Langroodi ◽  
Yemin Lan ◽  
Ben Stenuit ◽  
Gail Rosen ◽  
Joseph B Hughes ◽  
...  

Environmental contamination by 2,4,6-trinitrotoluene (TNT), historically the most widely used secondary explosive, is a long-standing problem in former military conflict areas and at manufacturing and decommissioning plants. In field test plots at a former explosives manufacturing site, removal of TNT and dinitrotoluenes (DNTs) was observed following periods of tillage. Since tilling of soils has previously been shown to alter the microbial community, this study was aimed at understanding how the microbial community is altered in soils with historical contamination of nitro explosives from the former Barksdale TNT plant. Samples of untilled pristine soils, untilled TNT-contaminated soils and tilled TNT-contaminated soils were subjected to targeted amplicon sequencing of 16S ribosomal RNA genes in order to compare the structure of their bacterial communities. In addition, metagenomic data generated from the TNT tilled soil was used to understand the potential functions of the bacterial community relevant to nitroaromatic degradation. While the biodiversity dropped and the Burkholderiales order became dominant in both tilled and untilled soil regardless of tillage, the bacterial community composition at finer taxonomic levels revealed a greater difference between the two treatments. Functional analysis of metagenome assembled genome (MAG) bins through systematic review of commonly proposed DNT and TNT biotransformation pathways suggested that both aerobic and anaerobic degradation pathways were present. A proposed pathway that considers both aerobic and anaerobic steps in the degradation of TNT in the scenario of the tilled contaminated soils is presented.


Sign in / Sign up

Export Citation Format

Share Document