scholarly journals Correction to: Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tamara Renata Machado Ribeiro ◽  
Mateus Kawata Salgaço ◽  
Maria Angela Tallarico Adorno ◽  
Miriam Aparecida da Silva ◽  
Roxane Maria Fontes Piazza ◽  
...  
2017 ◽  
Vol 146 (2) ◽  
pp. 187-196 ◽  
Author(s):  
A. F. W. MIKHAIL ◽  
C. JENKINS ◽  
T. J. DALLMAN ◽  
T. INNS ◽  
A. DOUGLAS ◽  
...  

SUMMARYIn August 2015, Public Health England detected an outbreak of Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 caused by contaminated salad leaves in a mixed leaf prepacked salad product from a national retailer. The implicated leaves were cultivated at five different farms and the zoonotic source of the outbreak strain was not determined. In March 2016, additional isolates from new cases were identified that shared a recent common ancestor with the outbreak strain. A case–case study involving the cases identified in 2016 revealed that ovine exposures were associated with illness (n = 16; AOR 8·24; 95% CI 1·55–39·74). By mapping the recent movement of sheep and lambs across the United Kingdom, epidemiological links were established between the cases reporting ovine exposures. Given the close phylogenetic relationship between the outbreak strain and the isolates from cases with ovine exposures, it is plausible that ovine faeces may have contaminated the salad leaves via untreated irrigation water or run-off from fields nearby. Timely and targeted veterinary and environmental sampling should be considered during foodborne outbreaks of STEC, particularly where ready to eat vegetables and salads are implicated.


2010 ◽  
Vol 78 (9) ◽  
pp. 4068-4076 ◽  
Author(s):  
Jennifer Hwang ◽  
Lisa M. Mattei ◽  
Laura G. VanArendonk ◽  
Philip M. Meneely ◽  
Iruka N. Okeke

ABSTRACT Enteroaggregative Escherichia coli (EAEC) strains are important diarrheal pathogens. EAEC strains are defined by their characteristic stacked-brick pattern of adherence to epithelial cells but show heterogeneous virulence and have different combinations of adhesin and toxin genes. Pathoadaptive deletions in the lysine decarboxylase (cad) genes have been noted among hypervirulent E. coli subtypes of Shigella and enterohemorrhagic E. coli. To test the hypothesis that cad deletions might account for heterogeneity in EAEC virulence, we developed a Caenorhabditis elegans pathogenesis model. Well-characterized EAEC strains were shown to colonize and kill C. elegans, and differences in virulence could be measured quantitatively. Of 49 EAEC strains screened for lysine decarboxylase activity, 3 tested negative. Most notable is isolate 101-1, which was recovered in Japan, from the largest documented EAEC outbreak. EAEC strain 101-1 was unable to decarboxylate lysine in vitro due to deletions in cadA and cadC, which, respectively, encode lysine decarboxylase and a transcriptional activator of the cadAB genes. Strain 101-1 was significantly more lethal to C. elegans than control strain OP50. Lethality was attenuated when the lysine decarboxylase defect was complemented from a multicopy plasmid and in single copy. In addition, restoring lysine decarboxylase function produced derivatives of 101-1 deficient in aggregative adherence to cultured human epithelial cells. Lysine decarboxylase inactivation is pathoadapative in an important EAEC outbreak strain, and deletion of cad genes could produce hypervirulent EAEC lineages in the future. These results suggest that loss, as well as gain, of genetic material can account for heterogeneous virulence among EAEC strains.


1999 ◽  
Vol 122 (2) ◽  
pp. 337-341 ◽  
Author(s):  
M. AKIBA ◽  
T. MASUDA ◽  
T. SAMESHIMA ◽  
K. KATSUDA ◽  
M. NAKAZAWA

A total of 77 Escherichia coli O157[ratio ]H7 (H−) isolates from cattle in Japan were investigated by molecular biological methods. Most of these isolates (43 isolates) possessed the stx2 gene, but not stx1. Fifteen bacteriophage types and 50 pulsed-field gel electrophoresis (PFGE) profiles were observed. One isolate was indistinguishable from the human outbreak strain by these methods. This indicates that cattle must be considered as a possible source of human E. coli O157[ratio ]H7 infection in Japan.


2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


2003 ◽  
Vol 185 (21) ◽  
pp. 6385-6391 ◽  
Author(s):  
Jenny G. Smith ◽  
Jamie A. Latiolais ◽  
Gerald P. Guanga ◽  
Sindhura Citineni ◽  
Ruth E. Silversmith ◽  
...  

ABSTRACT In a two-component regulatory system, an important means of signal transduction in microorganisms, a sensor kinase phosphorylates a response regulator protein on an aspartyl residue, resulting in activation. The active site of the response regulator is highly charged (containing a lysine, the phosphorylatable aspartate, two additional aspartates involved in metal binding, and an Mg2+ ion), and introduction of the dianionic phosphoryl group results in the repositioning of charged moieties. Furthermore, substitution of one of the Mg2+-coordinating aspartates with lysine or arginine in the Escherichia coli chemotaxis response regulator CheY results in phosphorylation-independent activation. In order to examine the consequences of altered charge distribution for response regulator activity and to identify possible additional amino acid substitutions that result in phosphorylation-independent activation, we made 61 CheY mutants in which residues close to the site of phosphorylation (Asp57) were replaced by various charged amino acids. Most substitutions (47 of 61) resulted in the complete loss of CheY activity, as measured by the inability to support clockwise flagellar rotation. However, 10 substitutions, all introducing a new positive charge, resulted in the loss of chemotaxis but in the retention of some clockwise flagellar rotation. Of the mutants in this set, only the previously identified CheY13DK and CheY13DR mutants displayed clockwise activity in the absence of the CheA sensor kinase. The absence of negatively charged substitution mutants with residual activity suggests that the introduction of additional negative charges into the active site is particularly deleterious for CheY function. Finally, the spatial distribution of positions at which amino acid substitutions are functionally tolerated or not tolerated is consistent with the presently accepted mechanism of response regulator activation and further suggests a possible role for Met17 in signal transduction by CheY.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115534 ◽  
Author(s):  
Patrick D. Scheu ◽  
Philipp A. Steinmetz ◽  
Felix Dempwolff ◽  
Peter L. Graumann ◽  
Gottfried Unden

2013 ◽  
Vol 76 (6) ◽  
pp. 939-944 ◽  
Author(s):  
E. V. TAYLOR ◽  
T. A. NGUYEN ◽  
K. D. MACHESKY ◽  
E. KOCH ◽  
M. J. SOTIR ◽  
...  

Non-O157 Shiga toxin–producing Escherichia coli (STEC) can cause severe illness, including hemolytic uremic syndrome (HUS). STEC O145 is the sixth most commonly reported non-O157 STEC in the United States, although outbreaks have been infrequent. In April and May 2010, we investigated a multistate outbreak of STEC O145 infection. Confirmed cases were STEC O145 infections with isolate pulsed-field gel electrophoresis patterns indistinguishable from those of the outbreak strain. Probable cases were STEC O145 infections or HUS in persons who were epidemiologically linked. Case-control studies were conducted in Michigan and Ohio; food exposures were analyzed at the restaurant, menu, and ingredient level. Environmental inspections were conducted in implicated food establishments, and food samples were collected and tested. To characterize clinical findings associated with infections, we conducted a chart review for case patients who sought medical care. We identified 27 confirmed and 4 probable cases from five states. Of these, 14 (45%) were hospitalized, 3 (10%) developed HUS, and none died. Among two case-control studies conducted, illness was significantly associated with consumption of shredded romaine lettuce in Michigan (odds ratio [OR] = undefined; 95%confidence interval [CI] = 1.6 to undefined) and Ohio (OR = 10.9; 95%CI = 3.1 to 40.5). Samples from an unopened bag of shredded romaine lettuce yielded the predominant outbreak strain. Of 15 case patients included in the chart review, 14 (93%) had diarrhea and abdominal cramps and 11 (73%) developed bloody diarrhea. This report documents the first foodborne outbreak of STEC O145 infections in the United States. Current surveillance efforts focus primarily on E. coli O157 infections; however, non-O157 STEC can cause similar disease and outbreaks, and efforts should be made to identify both O157 and non-O157 STEC infections. Providers should test all patients with bloody diarrhea for both non-O157 and O157 STEC.


Sign in / Sign up

Export Citation Format

Share Document