scholarly journals The resistance of peanut to soil-borne pathogens improved by rhizosphere probiotics under calcium treatment

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zhang ◽  
Bo-wen Zhang ◽  
Jie-fu Deng ◽  
Lin Li ◽  
Tu-yong Yi ◽  
...  

Abstract Background Peanut (Arachis hypogaea L.) is an important oil and economic crop. Calcium modulates plants in response to abiotic stresses and improves plant resistance to pathogens. Enrichment of beneficial microorganisms in the rhizosphere is associated with plant disease resistance and soil development. The purpose of this study was to analyze the differences in peanut rhizosphere microbial community structure between the calcium treatment and the control during two growth stages and to explain why calcium application could improve the resistance of peanuts to soil-borne pathogens. Results The 16S rDNA amplicon sequencing of rhizosphere microbiome showed that calcium application significantly enriched Serratia marcescens and other three dominant strains at the seedling stage. At the pod filling stage, ten dominant stains such as Sphingomonas changbaiensis and Novosphingobium panipatense were enriched by calcium. Serratia marcescens aseptic fermentation filtrate was mixed with PDA medium and inoculated with the main soil-borne pathogens in the seedling stage, which could inhibit the growth of Fusarium solani and Aspergillus flavus. The aseptic fermentation filtrate of Novosphingobium panipatense was mixed with PDA medium and inoculated with the main soil-borne pathogens in the pod filling stage, which could inhibit the growth of Sclerotium rolfsii and Leptosphaerulina arachidicola. Conclusions Calcium application increases the resistance of peanuts to soil-borne pathogens by enriching them with specific dominant bacteria.

2021 ◽  
Author(s):  
Wei Zhang ◽  
Bo-wen Zhang ◽  
Lin Li ◽  
Tu-yong Yi ◽  
Yan-yun Hong

Abstract Background: Peanut (Arachis hypogaea L.) is an important oil and economic crop. Calcium can regulate plant autoimmunity, respond to biotic and abiotic stresses, and improve plant resistance to pathogens. The enrichment of beneficial microorganisms in the rhizosphere is related to plant disease resistance and soil development. The purpose was to analyze the differences of peanut rhizosphere microbial community structure between calcium treatment and control during two growth stages, and the reason that calcium application could improve peanut’s resistance to soil-borne pathogens.. Results: The 16S amplicon sequencing of rhizosphere microbiome showed that calcium application significantly enriched Serratia marcescens and other three dominant strains at the seedling stage. At the pod filling stage, ten dominant stains such as Sphingomonas changbaiensis and Novosphingobium panipatense were enriched by calcium. Serratia marcescens aseptic fermentation filtrate was mixed with PDA medium and inoculated with soil-borne pathogens, which could inhibit the growth of Fusarium solani and Aspergillus flavus at the seedling stage. The fermentation filtrate of Novosphingobium panipatense was mixed with PDA medium and inoculated with main pathogens, which could inhibit the growth of Sclerotium rolfsii and Leptosphaerulina arachidicola.Conclusions: Calcium application enhanced the ability of peanuts to resist pathogens by enriching specific dominant bacteria.


2021 ◽  
Author(s):  
Angela Whittaker

Abstract R. rufiabdominalis is an economic pest of upland rice, particularly in Japan, but is not a pest of irrigated rice anywhere in the world (Grist and Lever, 1969). Injury to upland rice can be severe in Japan, with losses of up to 50-70% (Yano et al., 1983). Occurrence was related to the cultivars of upland rice in China, where aphids caused light damage at the seedling stage and heavy damage at the tillering stage (Ding, 1985). Generally, aphids cause more serious damage during the early growth stages (Yano et al., 1983).


2021 ◽  
pp. 312-319
Author(s):  
Abdulwahid Saif ◽  
Aref Al-Shamiri ◽  
Abdulnour Shaher

Abstract M3 derived mutants from two bread wheat varieties, namely, 'Giza 186' and 'Saha 93', were screened for resistance to the rust Ug99 at two locations in Njoro (Kenya) and in Tihama (Yemen). At Tihama, two mutants of 'Giza 186' (G-M2-2010-1-28 and G-M2-2010-41-52) and four mutants of 'Saha 93' (S-M2-2010-16-12, S-M2-2010-21-13, S-M2-2010-22-14 and S-M2-2010-27-15) were seen to be resistant at both seedling and adult stages while their parents were resistant at seedling stage and susceptible at adult stage. In Kenya, the resistance score of the mutants was slightly different from those obtained at Tihama. The mutants G-M2-2010-1-28 and G-M2-2010-41-52 were stable in their level of resistance recorded at Tihama, but only two mutants of 'Saha 93' (S-M2-2010-16-12 and S-M2-2010-27-15) were resistant at both growth stages. S-M2-2010-22-14 and S-M2-2010-21-13 were resistant at the seedling stage while susceptible at adult stage. Further selection on these mutants for yield potential, agronomic performance and yellow rust disease resistance, as well as on selected mutants of both 'Giza 186' and 'Saha 93', at M5-M6 stages identified superior mutant lines compared with the two parents 'Saha 93' and 'Giza 186'. These included the line Erra-010-GM2w-41-52-40, which ranked first in yield (3768 kg/ha), followed by the lines Erra-010-SwM2-16-12-19, Erra-010-GM2w-1-28-18 and Erra-010-SwM2-22-14-6. Moreover, it can be concluded that Erra-010-GM2w-41-52-40 and Erra-010-SwM2-16-12-19 are highly recommended for their resistance to stem and yellow rust diseases as well as for yield potential and preference by farmers. Therefore, efforts are in progress to increase their seeds for dissemination over a wide range of farmers and wheat areas where rust diseases are an epidemic, and for registration of the lines as improved mutant varieties.


1957 ◽  
Vol 37 (1) ◽  
pp. 69-83 ◽  
Author(s):  
H. A. Friesen ◽  
D. R. Walker

Oats, flax and barley were sprayed with various formulations of MCP (2-methyl-4-chlorophenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) at a number of Experimental Farms in Western Canada in 1954 and 1955. Each formulation was applied at 4 and 8 ounces of acid equivalent per acre at each of two dates, viz., Date 1, when the weeds were in the seedling stage less than 3 inches in height; and Date 2, at a stage coinciding with the first appearance of buds on the major weed species.Stinkweed (Thlaspi arvense, L.), wild mustard (Brassica kaber (DC.) L.C. Wheeler var. pinnatifida (Stokes) L.C. Wheeler), lamb's quarters (Chenopodium album L.), Russian pigweed (Axyris amarantoides L.), and ball mustard (Neslia paniculata L.), were effectively controlled by each of the MCP and 2,4-D formulations used. Russian thistle (Salsola kali L.), and red-root pigweed (Amaranthus retroflexus L.), were not satisfactorily controlled by MCP, whereas hemp nettle (Galeopsis tetrahit L.) was not controlled by 2,4-D. Wild buckwheat (Polygonum convolvulus L.) was not controlled by any of the treatments. Each treatment was more effective when applied during the seedling stage of the weeds.On the basis of wood control and yield of grain the results of this study favour the use of MCP over 2,4-D with either oats or flax. Oats was significantly more tolerant to MCP, particularly if treated during the early growth stages when weed competition was most critical. With flax, the difference in tolerance was most pronounced in favour of MCP at the later date of treatment. The 2,4-D ester and low volatile ester resulted in a preponderance of plant deformities, lowered the yields of both oats and flax and delayed the maturity of flax significantly. Barley yields in this study were not adversely affected by any of the treatments.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 882
Author(s):  
Dhananjay Kumar ◽  
Sandeep Kushwaha ◽  
Chiara Delvento ◽  
Žilvinas Liatukas ◽  
Vivekanand Vivekanand ◽  
...  

Drought stress is one of the key plant stresses reducing grain yield in cereal crops worldwide. Although it is not a breeding target in Northern Europe, the changing climate and the drought of 2018 have increased its significance in the region. A key challenge, therefore, is to identify novel germplasm with higher drought tolerance, a task that will require continuous characterization of a large number of genotypes. The aim of this work was to assess if phenotyping systems with low-cost consumer-grade digital cameras can be used to characterize germplasm for drought tolerance. To achieve this goal, we built a proximal phenotyping cart mounted with digital cameras and evaluated it by characterizing 142 winter wheat genotypes for drought tolerance under field conditions. The same genotypes were additionally characterized for seedling stage traits by imaging under controlled growth conditions. The analysis revealed that under field conditions, plant biomass, relative growth rates, and Normalized Difference Vegetation Index (NDVI) from different growth stages estimated by imaging were significantly correlated to drought tolerance. Under controlled growth conditions, root count at the seedling stage evaluated by imaging was significantly correlated to adult plant drought tolerance observed in the field. Random forest models were trained by integrating measurements from field and controlled conditions and revealed that plant biomass and relative growth rates at key plant growth stages are important predictors of drought tolerance. Thus, based on the results, it can be concluded that the consumer-grade cameras can be key components of affordable automated phenotyping systems to accelerate pre-breeding for drought tolerance.


2020 ◽  
Vol 8 (1) ◽  
pp. 83 ◽  
Author(s):  
Sébastien Renaut ◽  
Rachid Daoud ◽  
Jacynthe Masse ◽  
Agathe Vialle ◽  
Mohamed Hijri

Little is known about establishment success of the arbuscular mycorrhizal fungal (AMF) inocula and their effects on a soil-indigenous community of AMF. In this study, we assessed the effect of introducing Rhizophagus irregularis DAOM-197198 in soil under field condition on the community composition of indigenous AMF in the roots of corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum). Three field trials were conducted with inoculated and non-inoculated plots. Four to ten roots and their rhizosphere soil samples of two growth stages for corn and wheat, and one growing stage of soybean, were collected, totalling 122 root and soil samples. Root colonization was measured microscopically, and the fungal communities were determined by paired-end Illumina MiSeq amplicon sequencing using 18S rDNA marker. After quality trimming and merging of paired ends, 6.7 million sequences could be assigned to 414 different operational taxonomic units. These could be assigned to 68 virtual taxa (VT) using the AMF reference sequence database MaarjAM. The most abundant VT corresponded to R. irregularis. The inoculation treatment did not influence the presence of R. irregularis, or AMF community diversity in roots. This seems to indicate that inoculation with R. irregularis DAOM-197198 does not change the indigenous AMF community composition, probably because it is already present in high abundance naturally.


2009 ◽  
Vol 60 (4) ◽  
pp. 328 ◽  
Author(s):  
C. Ye ◽  
S. Fukai ◽  
I. Godwin ◽  
R. Reinke ◽  
P. Snell ◽  
...  

Low temperature is a common production constraint in rice cultivation in temperate zones and high-elevation environments, with the potential to affect growth and development from germination to grain filling. There is a wide range of genotype-based differences in cold tolerance among rice varieties, these differences often reflecting growth conditions in the place of origin, as well as breeding history. However, improving low temperature tolerance of varieties has been difficult, due to a lack of clarity of the genetic basis to low temperature tolerance for different growth stages of the rice plant. Seeds or plants of 17 rice varieties of different origins were exposed to low temperature during germination (15°C), seedling, booting, and flowering stages (18.5°C), to assess their cold tolerance at different growth stages. Low temperature at the germination stage reduced both the percentage and speed of germination. Varieties from China (B55, Banjiemang, and Lijianghegu) and Hungary (HSC55) were more tolerant of low temperature than other varieties. Most of the varieties showed moderate levels of low temperature tolerance during the seedling stage, the exceptions being some varieties from Australia (Pelde, YRL39, and YRM64) and Africa (WAB160 and WAB38), which were susceptible to low temperature at the seedling stage. Low temperature at booting and flowering stages reduced plant growth and caused a significant decline in spikelet fertility. Some varieties from China (B55, Bangjiemang, Lijiangheigu), Japan (Jyoudeki), the USA (M103, M104), and Australia (Quest) were tolerant or moderately tolerant, while the remaining varieties were susceptible or moderately susceptible to low temperature at booting and flowering stages. Three varieties from China (B55, Lijianghegu, Banjiemang) and one from Hungary (HSC55) showed consistent tolerance to low temperature at all growth stages. These varieties are potentially important gene donors for breeding and genetic studies. The cold tolerance of the 17 rice varieties assessed at different growth stages was correlated. Screening for cold tolerance during early growth stages can therefore potentially be an effective way for assessing cold tolerance in breeding programs.


2018 ◽  
Author(s):  
Zongfu Hu ◽  
Xi CHEN ◽  
Jie CHANG ◽  
Jianhua YU ◽  
Qing TONG ◽  
...  

Widely distributed across the world, the freshwater snail Radix auricularia plays an important role in freshwater systems. In this study, gut bacterial communities of R. auricularia were characterized using 16S rRNA amplicon sequencing, then intestinal bacteria were compared at different growth stages: adult snails (AS) (with complete gonadal development) and juvenile snails (JS) (with incomplete gonadal development). We obtained 251,072 high quality sequences which were clustered into 1,196 operational taxonomic units (OTUs) with 97% sequence identity. The predominant phyla were Proteobacteria and Cyanobacteria, followed by Chloroflexi, Firmicutes, and Actinobacteria. Other bacterial species such as Tenericutes, Bacteroidetes, Fusobacteria and Verrucomicrobia were present to a lesser extent. 52 bacterial families and 55 genera were found in > 1% of each sample. A large number of species could not be successfully identified. 469 core OTUs were found to make up 39.38% of all OTUs and 88.38% of all sequences. Samples obtained from juvenile organisms possessed higher ratios of Ruminococcaceae, Subdoligranulum, and Faecalibacterium than adult species. Furthermore, 16S rRNA gene data was used to predict function, showing that genes related to metabolism and environmental information processing were rich in snail samples.


2021 ◽  
Vol 12 ◽  
Author(s):  
Khin Lay Kyu ◽  
Al Imran Malik ◽  
Timothy David Colmer ◽  
Kadambot H. M. Siddique ◽  
William Erskine

Mungbean [Vigna radiata (L.) Wilczek] and blackgram [Vigna mungo (L.) Hepper] are important crops for smallholder farmers in tropical and subtropical regions. Production of both crops is affected by unexpected and increasingly frequent extreme precipitation events, which result in transient soil waterlogging. This study aimed to compare the waterlogging tolerance of mungbean and blackgram genotypes under the varying duration of waterlogging stress at germination and seedling stages. We evaluated the responses to different durations of transient waterlogging in a sandy clay loam under temperature-controlled glasshouse conditions. Waterlogging durations were 0, 1, 2, 3, 4, 5, 6, 7, and 8 days during germination and 0, 2, 4, 8, and 16 days during the seedling stage. We used two mungbean genotypes (green testa), Celera II-AU (small-seeded), and Jade-AU (large-seeded), contrasting in seed size and hypocotyl pigmentation, and a blackgram genotype (black testa), Onyx-AU. Waterlogging reduced soil redox potential, delayed or even prevented germination, decreased seedling establishment, and affected shoot and root development. In the seedlings waterlogged (WL) at 15 days after sowing (DAS), adventitious root formation and crown nodulation varied between the genotypes, and 16 days of waterlogging substantially reduced growth but did not result in plant death. Plants in soil with waterlogging for 8–16 days followed by drainage and sampling at 39 DAS had reduced shoot and root dry mass by 60–65% in mungbean and 40% in blackgram compared with continuously drained controls, due at least in part to fewer lateral roots. Soil plant analysis development (SPAD) chlorophyll content was also reduced. Onyx-AU, a blackgram genotype, was more tolerant to transient waterlogging than Jade-AU and Celera II-AU in both growth stages. Of the two mungbean genotypes, Celera II-AU had a greater seedling establishment than Jade-AU post waterlogging imposed at sowing. In contrast, Jade-AU had more plant biomass and greater recovery growth than Celera II-AU after waterlogging and recovery during the seedling stage. Both species were delayed in emergence in response to the shorter periods of transient waterlogging at germination, and with the longer waterlogging germination and emergence failed, whereas at the seedling stage both showed adaptation by the formation of adventitious roots.


Sign in / Sign up

Export Citation Format

Share Document