scholarly journals Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Qingguo Du ◽  
Kai Wang ◽  
Cheng Xu ◽  
Cheng Zou ◽  
Chuanxiao Xie ◽  
...  
Author(s):  
Vinícius José Ribeiro ◽  
Edson Marcio Mattiello ◽  
Deusanilde de Jesus Silva ◽  
Leonardus Vergütz

Low phosphorus use efficiency (PUE) is one of the major reasons of poor production worldwide. Among the various approaches used to enhance PUE, polymer coated fertilizers are relatively a new concept. Its main advantages are that they dissolve slowly and release nutrients to plants gradually during the growing season. Keeping this in view, a study was performed in the laboratory to evaluate polymers coated monoammonium phosphate (MAP) to enhance PUE. Commercial MAP and MAP coated with biodegradable polymers with Krafit black liquor (BL) and cellulose acetate (CA) in the concentration (0.5, 1.0, 2.0 wt % coating). The effectiveness of these coatings was assessed by the electrical conductivity (EC) and phosphorus release (PR) in a kinetic experiment. The kinetic study was carried out in a controlled environment (± 25 °C), following the release pattern of P from 1.5 g of fertilizer in 50 mL of H2O, with and without the coatings. The objective of this work was to study different lignin-based coatings and the phosphorus release behavior of the resulting fertilizer. EC showed to be an effective method of indirect analysis of P releasing from coated MAP. The BL coating presented better results than the CA in terms of controlling the release of P, and the higher the coating ratio (1.0 and 2.0 %) the slower the release of P.


2021 ◽  
Vol 4 ◽  
Author(s):  
Victoria Cerecetto ◽  
Elena Beyhaut ◽  
Laurie Amenc ◽  
Carlos Trives ◽  
Nora Altier ◽  
...  

Phosphorus deficiency can be a major limitation to legume growth when plant nitrogen nutrition depends on symbiotic nitrogen fixation. One possible approach to overcome this constraint is the selection of plant and rhizobial genotypes capable of metabolizing complex forms of phosphorus in the nodules. The aim of this research was to study the rhizobial phytase transcript abundance in nodules of two soybean cultivars (Glycine max (L.) Merr.) grown under two different phosphorus conditions in hydroaeroponic conditions. An in situ RT-PCR of a rhizobial phytase was performed in microtome sections of soybean nodules of two cultivars growing under phosphorus sufficiency vs. phosphorus deficiency. The results showed that the plant cultivar may influence the level of transcript abundance of the bacterial phytase and in consequence affect the phosphorus use efficiency of nitrogen-dependent Bradyrhizobium spp.-soybean symbioses. Thus, the selection of a good combination of plant and rhizobial genotypes should be a priority when breeding for phosphorus deficiency is performed.


Bragantia ◽  
2016 ◽  
Vol 75 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Daiana Alves da Silva ◽  
Jose Antonio de Fatima Esteves ◽  
João Guilherme Ribeiro Gonçalves ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Tamires Ribeiro ◽  
...  

ABSTRACT Common bean is one of the most important legumes in Latin America, mostly grown in soils with low phosphorus (P) availability. Thus, this study aimed to evaluate the responses of 20 bean genotypes to P deficiency. The experiment was a completely randomized design in a 2 × 20 factorial arrangement; the first factor consisted of P levels and the second factor, of 20 bean genotypes, with six replications. The substrate was a Red Eutrophic Oxisol with low P content. For application of the P treatments, it was applied simple superphosphate, consisting of two levels: restrictive and control, with the application of 45 and 90 kg∙ha–1 of P2O5, respectively. At 28 days, we observed the first symptoms of nutrient deficiency, with the decrease in the relative chlorophyll index in the restrictive level treatment. In addition, the treatments were effective in differentiating effects of both factors levels of P and genotypes for most traits evaluated relative to shoot, root and grain yield. It was possible to classify the genotypes in relation to use efficiency and responsiveness to P application, according to their average yield performances. Seven genotypes presented better performances for both P levels, being classified as Efficient and Responsive: G 2333, IAC Carioca Tybatã, IAPAR 81, IAC Imperador, IAC Formoso, BRS Esplendor and IPR Tangará; the first four genotypes were also classified as Efficient and Responsive under hydroponic conditions.


2017 ◽  
Vol 136 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Veronica N. E. Uzokwe ◽  
Baffour Asafo-Adjei ◽  
Iyiola Fawole ◽  
Robert Abaidoo ◽  
Inakwu O. A. Odeh ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Amira Beroueg ◽  
François Lecompte ◽  
Alain Mollier ◽  
Loïc Pagès

Low phosphorus (P) bioavailability in the soil and concerns over global P reserves have emphasized the need to cultivate plants that acquire and use P efficiently. Root architecture adaptation to low P can be variable depending on species or even genotypes. To assess the genetic variability of root architectural traits and their responses to low P in the Lactuca genus, we examined fourteen genotypes including wild species, ancient and commercial lettuce cultivars at low (LP, 0.1 mmol. L–1) and high P (HP, 1 mmol. L–1). Plants were grown in cylindrical pots adapted for the excavation and observation of root systems, with an inert substrate. We identified substantial genetic variation in all the investigated root traits, as well as an effect of P availability on these traits, except on the diameter of thinner roots. At low P, the main responses were a decrease in taproot diameter, an increase in taproot dominance over its laterals and an increase in the inter-branch distance. Although the genotype x P treatment effect was limited to root depth, we identified a tradeoff between the capacity to maintain a thick taproot at low P and the dominance of the taproot over its laterals. Regardless of the P level, the phosphorus-use-efficiency (PUE) varied among lettuce genotypes and was significantly correlated with total root biomass regardless of the P level. As taproot depth and maximum apical diameter were the principal determinants of total root biomass, the relative increase in PUE at low P was observed in genotypes that showed the thickest apical diameters and/or those whose maximal apical diameter was not severely decreased at low P availability. This pre-eminence of the taproot in the adaptation of Lactuca genotypes to low P contrasts with other species which rely more on lateral roots to adapt to P stress.


2020 ◽  
Vol 80 (04) ◽  
Author(s):  
Harsh Kumar Dikshit ◽  
Venkata Ravi Prakash Reddy ◽  
Gyan Prakash Mishra ◽  
Muraleedhar Aski ◽  
Renu Pandey ◽  
...  

Phosphorus (P) deficiency is one of the serious problems affecting plant growth in mungbean in different parts of the world. The root, shoot and biomass related traits were investigated for identifying P-efficient genotypes in 54 mungbean genotypes under low-P (LP) and normal-P (NP) conditions. In this study, the membership function value of P use efficiency of studied traits was used as a compendious index for studying P use efficiency (PUE) in mungbean. Among the studied traits, mean values of total root volume, chlorophyll concentration, root dry weight (RDW) and root to shoot ratio increased >25% under LP condition indicating that these traits are highly responsive to P deficiency. Correlation and stepwise regression analysis revealed that RDW explained most of the variation and could be used as a clear indicator of PUE. The five highly P-efficient genotypes namely, MH 805, M 42, PUSA 9531, EC 398885 and M 209 with high MFVP values may be used for PUE improvement in mungbean.


2012 ◽  
Vol 43 (1) ◽  
pp. 60-65
Author(s):  
Débora Santos Caixeta ◽  
Roberto Fritsche-Neto ◽  
Lorena Guimarães Batista ◽  
Humberto Fanelli Carvalho ◽  
Júlio César DoVale ◽  
...  

The objective of this study was to determine the relationship between heterosis and genetic divergence for phosphorus use efficiency (PUE) in tropical maize. It was used two groups of genitors, each consisting of seven lines, contrasting with each other in the nitrogen and phosphorus use efficiency. It was obtained 41 hybrid combinations between these groups, which were evaluated in low phosphorus. Randomized complete block design with two replications was used. For obtaining the components of variance and the breeding values were used REML/BLUP method. In the genotyping of the parental lines were used 80 microsatellite markers. Through the correlation between genetic distance obtained by the markers and specific combining ability it was not possible to determine with accuracy by molecular markers, the crosses that produced hybrids with the highest heterosis for PUE. Thus, is possible to conclude that there is no relationship between genetic divergence and heterosis for phosphorus use efficiency and its components in tropical maize.


Sign in / Sign up

Export Citation Format

Share Document