scholarly journals Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of TRITICUM AESTIVUM with T. kiharae

2020 ◽  
Vol 20 (S1) ◽  
Author(s):  
Оlga Orlovskaya ◽  
Nadezhda Dubovets ◽  
Lylia Solovey ◽  
Irina Leonova

Abstract Background Triticum kiharae (AtAtGGDD, 2n = 42) is of interest for the improvement of bread wheat as a source of high grain protein and gluten content, as well as resistance to many diseases. The use of T. kiharae for the improvement of T. aestivum L. is complicated by the fact that the homology degree of their genomes is low and this leads to an unbalanced set of chromosomes in the gametes of its first generations and the elimination of some genotypes. The aim of this study was to analyze the nature of alien introgressions and their effect on the cytological stability of hybrids obtained from crossing of bread wheat varieties with T. kiharae. Results Using C-banding, the presence of entire chromosomes of T. kiharae in the karyotypes of hybrid lines (intergenomic substitution 2G/2B), chromosome arms (centric translocation Т2AtS:2AL) and large inserts in the form of terminal translocations involving chromosomes of 1st, 3rd and 5th homoeologous groups of B- and G-genomes were found. Molecular markers revealed short introgression of T. kiharae into the genome of common wheat varieties. The highest introgression frequency was shown for 1A, 1B, 2A, 5B, and 6A chromosomes, while no foreign chromatin was detected in 4A and 4B chromosomes. A high level of cytological stability (a meiotic index of 88.18–93.0%) was noted for the majority of introgression lines. An exception was found for the lines containing the structural reorganization of chromosome 5B, affecting the main genes of chromosome synapsis in terms of their functioning. Conclusions During the stabilization of hybrid karyotypes, the introgression of genetic material from T. kiharae into the genome of T. aestivum occurs in the form of short fragments detectable only by molecular markers and in the form of whole chromosomes (intergenomic substitution) and their large fragments (centric and terminal translocations). The level of cytological stability achieved in F10 by the majority of introgression lines ensures the formation of functional gametes sufficient for the successful reproduction of the obtained hybrids.

2019 ◽  
Vol 23 (7) ◽  
pp. 910-915
Author(s):  
E. R. Davoyan ◽  
L. A. Bespalova ◽  
R. O. Davoyan ◽  
E. V. Agaeva ◽  
G. I. Bukreeva ◽  
...  

This article presents the results of a molecular marker-assisted study of allelic variants of Wx genes in common wheat (Triticum aestivum L.) lines. The study was carried out as part of the work on the transfer of null alleles of the genes Wx-A1, Wx-B1, and Wx-D1 to the varieties of soft wheat and creation of breeding material with modified activities of the main enzymes involved in amylose biosynthesis. The lines were obtained at the Department of Breeding and Seed Production of Wheat and Triticale, National Center of Grain named after P.P. Lukyanenko, by crossing mutant forms carrying inactive (null) alleles of genes Wx-A1, Wx-B1, and Wx-D1 with bread wheat cultivars. The molecular markers selected for the study allowed identification of valuable breeding material carrying both single null alleles of Wx genes and their combinations in its genome. A combination of two null alleles (Wx-A1b + Wx-D1b) was detected in 30 lines. The presence of three null alleles (Wx-A1b + Wx-B1b + Wx-D1b), which corresponded to fully Wx wheat, was found in one line. We selected 37 lines that combined the presence of the Wx-B1e allele with the Wx-A1b and Wx-D1b null alleles. The Wx-A1b + Wx-B1e combination was identified in 26 lines, and 24 lines carried the combination of alleles Wx-B1e + Wx-D1b. The mutant forms PI619381, PI619384, and PI619386 were identified as carriers of the functional Wx-B1e allele. The Wx-A1b and Wx-B1e alleles could have been transferred to the studied lines from the donors used or from the Starshina and Korotyshka varieties, respectively. The mutant forms used in the crosses are donors of the Wx-B1b and Wx-D1b alleles. The use of molecular markers chosen by us for identification of the allelic state of the Wx-A1, Wx-B1, and Wx-D1 genes can provide grounds for marker-assisted selection for this trait. Selected lines found to possess null alleles of the Wx genes are applicable in breeding programs aimed at the improvement of technological qualities of grain and raise of bread wheat varieties with modified starch properties.


2021 ◽  
Author(s):  
Galina Mirskaya ◽  
◽  
N. Rushina ◽  
N. Sinyavina ◽  
A. Kochetov ◽  
...  

Determination the photoperiod-insensitive allele (Ppd-D1a) in wheat cultivars is necessary for use in breeding development of newly wheat cultivars. The aim of our study was to select breeding material by screening Ppd-D1 gene alleles and estimation value and the degree of heterosis in F1. Using these two methods, it is possible to select genetic material for increased breeding of new wheat lines that combine earliness and increased productivity. In this study 26 varieties of spring soft wheat were screened for the Ppd-D1 gene alleles. The Ppd-D1a allele was detected in 12 wheat varieties (ITMI 10, 29, 47, 57, 58, 59, 60, 89, 94, AFI-91, AFI-177, Opata 85), the recessive Ppd-D1b allele was detected in 14 wheat varieties (ITMI 7, 31, 32, 44, 80, 88, 83, 115, Zlata, Lisa, Agata, Lubava, W7984). Based on the results of a comprehensive assessment, parental pairs were chosen and 10 recombinants were obtained. Based on estimation value and the degree of heterosis of the main ear traits in F1, such as "ear length", "number of grains from the ear" and "weight of grains from the ear" were identified 4 crosses as initial to create wheat cultivars that combine earliness and increased productivity.


Author(s):  
E. R. Davoyan ◽  
R. O. Davoyan ◽  
Y. S. Zubanova ◽  
D. S. Mikov ◽  
D. M. Boldakov

The results of evaluating introgressive lines by resistance to leaf rust and the presence of molecular markers in them linked to the known resistance genes Lr28, Lr35, Lr51, Lr10, Lr26, Lr34 are presented.


Author(s):  
O. A. Orlovskaya ◽  
S. I. Vakula ◽  
L. V. Khotyleva ◽  
A. V. Kilchevsky

Related wild and cultural wheat species are regularly involved for expanding T. aestivum genetic diversity because they contain many valuable genes. We evaluated the effect of the genetic material of tetraploid species of the genus Triticum (T. dicoccoides, T. dicoccum) on the grain quality of introgression lines of spring bread wheat. The composition of the high molecular weight glutenin subunits which play an essential role in the formation of wheat baking properties was identified in the introgression lines of bread wheat and their parental forms. The traits of grain quality (hardness, protein and gluten content, gluten quality) were also evaluated. The lines with Glu-1 loci alleles from wheat relatives T. dicoccoides and Т. dicoccum were selected. It was found that the introgression of alien genetic material into the common wheat genome had a positive effect on the parameters of grain quality such as hardness, protein and gluten content. The lines with Glu-A1 loci alleles from T. dicoccoides and Glu-B1 from T. dicoccum were at the level of a parent wheat variety or of a higher gluten quality. As a result of the research, the new lines of bread soft wheat with high grain quality were found and can be used in the crop breeding.


2018 ◽  
Vol 17 (03) ◽  
pp. 213-220 ◽  
Author(s):  
Teresa Bieńkowska ◽  
Elżbieta Suchowilska ◽  
Wolfgang Kandler ◽  
Rudolf Krska ◽  
Marian Wiwart

AbstractThe grain of modern wheat cultivars has a significantly lower mineral content, including the content of copper, iron, magnesium, manganese, phosphorous, selenium and zinc. For this reason cereal breeders, are constantly searching for new genetic sources of minerals that are essential in human nutrition. Triticum polonicum, which is grown on a small scale in Spain, southern Italy, Algeria, Ethiopia and warm regions of Asia, deserves special attention in this context. The micronutrient and macronutrient content of T. polonicum versus T. durum and T. aestivum was compared in this study. Polish wheat grain was characterized by the significantly highest content of phosphorus (4.55 g/kg), sulphur (1.82 g/kg), magnesium (1.42 g/kg), zinc (49.5 mg/kg), iron (39.1 mg/kg) and boron (0.56 mg/kg) as well as a low content of aluminium (only 1.04 mg/kg). The macronutrient profile of most T. polonicum lines differed completely from that of common wheat and durum wheat. The principal component analysis supported discrimination of seven Polish wheat lines with a particularly beneficial micronutrient profile (P2, P3, P5, P7, P9, P22 and P25). These lines were characterized by the highest content of copper, iron and zinc, as well as the lowest concentrations of strontium, aluminium and barium which are undesirable in food products. The above lines can be potentially applied as source materials for breeding new wheat varieties. The results of this study indicate that Polish wheat could be used in genetic biofortification of durum wheat and common wheat.


2020 ◽  
Vol 24 (6) ◽  
pp. 557-567
Author(s):  
I. V. Porotnikov ◽  
O. Yu. Antonova ◽  
O. P. Mitrofanova

Bread wheat (Triticum aestivum L.), the varieties of which are widely used for the grain production, is difficultly crossable with related species of Triticeae Dum. This factor limits the chance of introduction of alien genetic material into the wheat gene pool and the possibility of new varieties breeding with good adaptation to adverse environmental factors. The crossability between wheat and related species is controlled by Kr1-Kr4 genes (Crossability with Rye, Hordeum and Aegilops spp.) and the SKr gene (Suppressor of crossability). SKr and Kr1 have the largest influence on the trait. In the case of the recessive alleles, these genes do not function and the quantity of hybrid seeds after pollination with alien species can achieve more than 50 %. SKr is located on 5BS between the GBR0233 and Xgwm234 markers, closely linked with the markers Xcfb341, TGlc2 and gene12. Kr1 was mapped on 5BL, proximally to the Ph1 gene, between the EST-SSR markers Xw5145 and Xw9340. The markers of SKr were used to control the transfer of its recessive allele into other wheat genotypes, which made it possible to obtain highly crossable forms. However, the advantages of using the SKr and Kr1 markers in marker-assisted selection and in the screening of ex situ collections are not sufficiently studied. The published Kr1 sequence for varieties with different crossability offers great prospects, because it will be possible to create allele-specific markers. In this review, the following issues are considered: genetic resources created by wheat and rye hybridization, the geographical distribution of easy-to-cross forms of wheat, genetic control of the wheat and rye compatibility, advances of the use of molecular markers in the mapping of Kr-genes and their transmission control.


2018 ◽  
Vol 23 ◽  
pp. 108-113
Author(s):  
O. A. Orlovskaya ◽  
S. I. Vakula ◽  
L. V. Khotyleva ◽  
A. V. Kilchevsky

Aim. T. kiharae (AtAtGGDD, 2n=42) is a source of high protein and gluten content, resistance to many diseases. Сommon wheat lines with the introgression of T. kiharae genetic material were obtained in order to enrich T. aestivum L. gene pool. The aim of this study was to assess the impact of T. kiharae genetic material on the grain quality of T. aestivum/T. kiharae introgression lines. Methods. The composition of the high molecular weight glutenin subunits was analyzed by SDS-PAGE. Evaluation of the most important traits of grain quality (hardness, protein and gluten content, gluten quality) was carried out according to GOST. Results. Сomparative analysis of the composition of high molecular weight glutenin subunits of introgressive lines and their parental forms allowed us to identify lines with novel alleles of Glu-1 loci, specific for T. kiharae. For most of the introgression lines T. aestivum/T. kiharae hardness, protein and gluten content were higher than for parent wheat varieties. Conclusions. Introgression of T. kiharaegenetic material in the genome of common wheat had a positive effect on all studied parameters of grain quality except the gluten quality. Keywords: common wheat, T. kiharae, glutenin, SDS-PAGE, quality of grain.


Sign in / Sign up

Export Citation Format

Share Document