scholarly journals Delayed development of aphasia related to degeneration of the arcuate fasciculus in the dominant hemisphere nine years after the onset in a patient with intracerebral hemorrhage: a case report

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Min Jye Cho ◽  
Sung Ho Jang

Abstract Background We report on a patient with an intracerebral hemorrhage (ICH), who showed delayed development of aphasia, which was demonstrated via follow up diffusion tensor tractography (DTT) to be related to neural degeneration of the arcuate fasciculus (AF). Case presentation A 51-year-old, right-handed male presented with right hemiparesis, which occurred at the onset of a spontaneous ICH in the left corona radiata and basal ganglia. Brain magnetic resonance images showed a hematoma in the left subcortical area at one month after onset and hemosiderin deposits in the left subcortical area at nine years after onset. At four weeks after onset, he exhibited severe aphasia, and Western Aphasia Battery (WAB) testing revealed an aphasia quotient in the 39.6 percentile (%ile). However, his aphasia improved to nearly a normal state, and at three months after onset, his aphasia quotient was in the 90.5 %ile. At approximately eight years after onset, he began to show aphasia, and his aphasia increased slowly with time resulting in a WAB aphasia quotient in the 12.5 %ile at nine years after onset. The integrity of the left AF over the hematoma was preserved on 1-month post-onset DTT. However, the middle portion of the left AF in the middle of the hemosiderin deposits showed discontinuation on 9-year post-onset DTT. The fractional anisotropy value of the left AF was higher on the 9-year post-onset DTT (0.48) than that on the 1-month post-onset DTT (0.35), whereas the mean diffusivity value was lower on the 9-year post-onset DTT (0.10) than that on the 1-month post-onset DTT (0.32). The fiber number of the left AF was decreased to 175 on the 9-year post-onset DTT from 239 on the 1-month post-onset DTT. Conclusions We report on a patient with ICH who showed delayed development of aphasia, which appeared to be related to degeneration of the AF in the dominant hemisphere. Our results suggest that DTT would be useful in ruling out neural degeneration of the AF.

2005 ◽  
Vol 46 (1) ◽  
pp. 104-109 ◽  
Author(s):  
H. Fukuda ◽  
J. Horiguchi ◽  
C. Ono ◽  
T. Ohshita ◽  
J. Takaba ◽  
...  

Purpose: To determine whether myotonic dystrophy (MyD) patients have diffusion tensor abnormalities suggestive of microstructural changes in normal‐appearing white matter (NAWM). Material and Methods: Conventional and diffusion tensor magnetic resonance images of the brain were obtained in 19 MyD patients and 19 age‐matched normal control subjects. Fractional anisotropy (FA) and mean diffusivity (MD) values were calculated in white matter lesions (WMLs) and NAWM in MyD patients and in the white matter of normal control subjects. Differences between WML and NAWM values and between MyD patient and control subject values were analyzed statistically. Results: Significantly lower FA and higher MD values were found in all regions of interest in the NAWM of MyD patients than in the white matter of control subjects ( P<0.01), as well as significantly lower FA and higher MD values in WMLs than in NAWM of MyD patients ( P<0.05). There was no significant correlation of mean FA or MD values in NAWM with patient age, age at onset, or duration of illness ( P>0.1). Conclusion: Diffusion tensor imaging analysis suggests the presence of diffuse microstructural changes in NAWM of MyD patients that may play an important role in the development of disability.


CNS Spectrums ◽  
2018 ◽  
Vol 24 (5) ◽  
pp. 533-543 ◽  
Author(s):  
Brenda Cabrera ◽  
César Romero-Rebollar ◽  
Luis Jiménez-Ángeles ◽  
Alma D. Genis-Mendoza ◽  
Julio Flores ◽  
...  

ObjectiveAn obsessive-compulsive disorder (OCD) subtype has been associated with streptococcal infections and is called pediatric autoimmune neuropsychiatric disorders associated with streptococci (PANDAS). The neuroanatomical characterization of subjects with this disorder is crucial for the better understanding of its pathophysiology; also, evaluation of these features as classifiers between patients and controls is relevant to determine potential biomarkers and useful in clinical diagnosis. This was the first multivariate pattern analysis (MVPA) study on an early-onset OCD subtype.MethodsFourteen pediatric patients with PANDAS were paired with 14 healthy subjects and were scanned to obtain structural magnetic resonance images (MRI). We identified neuroanatomical differences between subjects with PANDAS and healthy controls using voxel-based morphometry, diffusion tensor imaging (DTI), and surface analysis. We investigated the usefulness of these neuroanatomical differences to classify patients with PANDAS using MVPA.ResultsThe pattern for the gray and white matter was significantly different between subjects with PANDAS and controls. Alterations emerged in the cortex, subcortex, and cerebellum. There were no significant group differences in DTI measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity) or cortical features (thickness, sulci, volume, curvature, and gyrification). The overall accuracy of 75% was achieved using the gray matter features to classify patients with PANDAS and healthy controls.ConclusionThe results of this integrative study allow a better understanding of the neural substrates in this OCD subtype, suggesting that the anatomical gray matter characteristics could have an immune origin that might be helpful in patient classification.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Di Cristofori ◽  
Gianpaolo Basso ◽  
Camilla de Laurentis ◽  
Ilaria Mauri ◽  
Martina Andrea Sirtori ◽  
...  

Gliomas are brain tumors that are treated with surgical resection. Prognosis is influenced by the extent of resection and postoperative neurological status. As consequence, given the extreme interindividual and interhemispheric variability of subcortical white matter (WM) surgical planning requires to be patient's tailored. According to the “connectionist model,” there is a huge variability among both cortical areas and subcortical WM in all human beings, and it is known that brain is able to reorganize itself and to adapt to WM lesions. Brain magnetic resonance imaging diffusion tensor imaging (DTI) tractography allows visualization of WM bundles. Nowadays DTI tractography is widely available in the clinical setting for presurgical planning. Arcuate fasciculus (AF) is a long WM bundle that connects the Broca's and Wernicke's regions with a complex anatomical architecture and important role in language functions. Thus, its preservation is important for the postoperative outcome, and DTI tractography is usually performed for planning surgery within the language-dominant hemisphere. High variability among individuals and an asymmetrical pattern has been reported for this WM bundle. However, the functional relevance of AF in the contralateral non-dominant hemisphere in case of tumoral or surgical lesion of the language-dominant AF is unclear. This review focuses on AF anatomy with special attention to its asymmetry in both normal and pathological conditions and how it may be explored with preoperative tools for planning surgery on gliomas in language areas. Based on the findings available in literature, we finally speculate about the potential role of preoperative evaluation of the WM contralateral to the surgical site.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Syu-Jyun Peng ◽  
Tomor Harnod ◽  
Jang-Zern Tsai ◽  
Chien-Chun Huang ◽  
Ming-Dou Ker ◽  
...  

To investigate white matter (WM) abnormalities in neocortical epilepsy, we extract supratentorial WM parameters from raw tensor magnetic resonance images (MRI) with automated region-of-interest (ROI) registrations. Sixteen patients having neocortical seizures with secondarily generalised convulsions and 16 age-matched normal subjects were imaged with high-resolution and diffusion tensor MRIs. Automated demarcation of supratentorial fibers was accomplished with personalized fiber-labeled atlases. From the individual atlases, we observed significant elevation of mean diffusivity (MD) in fornix (cres)/stria terminalis (FX/ST) and sagittal stratum (SS) and a significant difference in fractional anisotropy (FA) among FX/ST, SS, posterior limb of the internal capsule (PLIC), and posterior thalamic radiation (PTR). For patients with early-onset epilepsy, the diffusivities of the SS and the retrolenticular part of the internal capsule were significantly elevated, and the anisotropies of the FX/ST and SS were significantly decreased. In the drug-resistant subgroup, the MDs of SS and PTR and the FAs of SS and PLIC were significantly different. Onset age was positively correlated with increases in FAs of the genu of the corpus callosum. Patients with neocortical seizures and secondary generalisation had microstructural anomalies in WM. The changes in WM are relevant to early onset, progression, and severity of epilepsy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandrine Yazbek ◽  
Stephanie Hage ◽  
Iyad Mallak ◽  
Tarek Smayra

AbstractFunctional MRI (fMRI) enables evaluation of language cortical organization and plays a central role in surgical planning. Diffusion Tensor Imaging (DTI) or Tractography, allows evaluation of the white matter fibers involved in language. Unlike fMRI, DTI does not rely on the patient’s cooperation. In monolinguals, there is a significant correlation between the lateralization of language on fMRI and on DTI. Our objective is to delineate the arcuate fasciculus (AF) in right- and left-handed trilinguals and determine if the AF laterality on DTI is correlated to language lateralization on fMRI. 15 right and 15 left-handed trilingual volunteers underwent fMRI and DTI. Laterality Index was determined on fMRI (fMRI-LI). Mean Diffusivity, Fractional Anisotropy (FA), Number of Fibers, Fiber Length, Fiber Volume and Laterality Index (DTI-LI) of the AF were calculated on DTI. 28 of the 30 subjects presented a bilateral AF. Most subjects (52%) were found to have a bilateral language lateralization of the AF on DTI. Only 4 subjects had bilateral lateralization of language on fMRI. The right AF demonstrated lower diffusivity than the left AF in the total participants, the right-handed, and the left-handed subjects. FA, Volume and Length of the AF were not significantly different between the two hemispheres. No correlation was found between the DTI-LI of the AF and the fMRI-LI. A prominent role of the right AF and a bilateral structural organization of the AF was present in our multilingual population regardless of their handedness. While in prior studies DTI was able to determine language lateralization in monolingual subjects, this was not possible in trilingual highly educated subjects.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Chorong Bae ◽  
Yoonhye Na ◽  
Minjae Cho ◽  
Yu Mi Hwang ◽  
Woo-Suk Tae ◽  
...  

Objectives: We evaluated the changes of arcuate fasciculus (AF), an important connecting pathway for language function, using DTI at 1-month and 6-month after stroke and investigated the relationship between structural changes of AF and improvement of post-stroke aphasia. Methods: We collected data from the STroke Outcome Prediction (STOP) database that is prospective data collecting system for functional recovery prediction after stroke based on neuroimaging study. Twenty-six patients with aphasia (PWA) who had first-ever stroke, presence of aphasia evaluated by Western Aphasia Battery (WAB) and no previous neurological or psychiatric diagnosis. The WAB and DTI data within 1 month (initial) and 6 months after (follow-up) stroke onset were used for analysis. And fractional anisotropy (FA), mean diffusivity (MD), fiber number (FN) and differences (Δ) at two time points of these parameters were obtained in bilateral AF in diffusion tensor tractography (DTT). Three types (I: not reconstructed, II: disrupted, discontinued or shallow, III: preserved) of classification according to integrity of AF was also included. Results: DTT parameters of bilateral AF showed statistically significant decrease in FA and increase in MD. Types of AF were changed in 6 patients (23%): 3 patients from type III to type II, 2 patients from type II to type I, and 1 patient from type II to type III. In Pearson’s correlation analysis, significant correlation was observed between 6-mon aphasia quotient (AQ) and parameters of left AF; positive correlation with FA (r=0.707, p<0.001), and negative correlation with MD (r=-.540, p<0.001). However, there was no correlation between 6-mon AQ score and FN of left AF, and all parameters of right AF. In addition, ΔDTT parameters were not correlated with either 6-mon AQ or ΔAQ. Conclusions: The AF changes over time not only in dominant but also in nondominant hemispheres in patients with aphasia after stroke. But amount of changes (Δ) in AF parameters were not associated with language recovery. Acknowledgement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2019R1A2C2003020).


2020 ◽  
Vol 10 (5) ◽  
pp. 280
Author(s):  
Hyeong Ryu ◽  
Chan-Hyuk Park

This study investigated the relationship between the structural characteristics of the left arcuate fasciculus (AF) reconstructed using diffusion tensor image (DTI) and the type of fluent aphasia according to hemorrhage lesions in patients with fluent aphasia following intracranial hemorrhage (ICH). Five patients with fluent aphasia following ICH (three males, two females; mean age 55.0 years; range 47 to 60 years) and with sixteen age-matched heathy control subjects were involved in this study. The ICHs of patients 1 and 2 were located in the left parietal lobe and the left basal ganglia. ICHs were located in the left anterior temporal of patient 3, the left temporal lobe of patient 4, and the left frontal lobe of patient 5. We assessed patients’ language function using K-WAB (the Korean version of the Western Aphasia Battery) and reconstructed the AF using DTI. We measured DTI parameters including the fractional anisotropy (FA), tract volume (TV), fiber number (FN), and mean diffusivity (MD). All patients showed neural tract injury (the decrement of FA, TV, and FN and increment of MD). The left AFs in patients 1 and 2 were shifted from Broca’s and Wernicke’s territories. The destruction of Wernicke’s territory resulted in conduction or transcortical sensory aphasia in patients 3 and 4. The structural difference of the AF in patients following ICH in the left hemisphere was associated with various types of fluent aphasia.


2020 ◽  
pp. 1-8
Author(s):  
Juan Delgado-Fernández ◽  
Maria Ángeles García-Pallero ◽  
Rafael Manzanares-Soler ◽  
Pilar Martín-Plasencia ◽  
Guillermo Blasco ◽  
...  

OBJECTIVELanguage lateralization is a major concern in some patients with pharmacoresistant epilepsy who will face surgery; in these patients, hemispheric dominance testing is essential to avoid further complications. The Wada test is considered the gold standard examination for language localization, but is invasive and requires many human and material resources. Functional MRI and tractography with diffusion tensor imaging (DTI) have demonstrated that they could be useful for locating language in epilepsy surgery, but there is no evidence of the correlation between the Wada test and DTI MRI in language dominance.METHODSThe authors performed a retrospective review of patients who underwent a Wada test before epilepsy surgery at their institution from 2012 to 2017. The authors retrospectively analyzed fractional anisotropy (FA), number and length of fibers, and volume of the arcuate fasciculus and uncinate fasciculus, comparing dominant and nondominant hemispheres.RESULTSTen patients with temporal lobe epilepsy were reviewed. Statistical analysis showed that the mean FA of the arcuate fasciculus in the dominant hemisphere was higher than in the nondominant hemisphere (0.369 vs 0.329, p = 0.049). Also, the number of fibers in the arcuate fasciculus was greater in the dominant hemisphere (881.5 vs 305.4, p = 0.003). However, no differences were found in the FA of the uncinate fasciculus or number of fibers between hemispheres. The length of fibers of the uncinate fasciculus was longer in the dominant side (74.4 vs 50.1 mm, p = 0.05). Volume in both bundles was more prominent in the dominant hemisphere (12.12 vs 6.48 cm3, p = 0.004, in the arcuate fasciculus, and 8.41 vs 4.16 cm3, p = 0.018, in the uncinate fasciculus). Finally, these parameters were compared in patients in whom the seizure focus was situated in the dominant hemisphere: FA (0.37 vs 0.30, p = 0.05), number of fibers (114.4 vs 315.6, p = 0.014), and volume (12.58 vs 5.88 cm3, p = 0.035) in the arcuate fasciculus were found to be statistically significantly higher in the dominant hemispheres. Linear discriminant analysis of FA, number of fibers, and volume of the arcuate fasciculus showed a correct discrimination in 80% of patients (p = 0.024).CONCLUSIONSThe analysis of the arcuate fasciculus and other tract bundles by DTI could be a useful tool for language location testing in the preoperative study of patients with refractory epilepsy.


Sign in / Sign up

Export Citation Format

Share Document