scholarly journals miR-29a-3p inhibits endometrial cancer cell proliferation, migration and invasion by targeting VEGFA/CD C42/PAK1

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aizhi Geng ◽  
Lin Luo ◽  
Fengyun Ren ◽  
Ling Zhang ◽  
Haiying Zhou ◽  
...  

Abstract Background This study aimed to investigate the mechanism of miR-29a-3p in regulating endometrial cancer (EC) progression. Methods A total of 72 EC patients were enrolled. EC cells were transfected. Cells proliferation, cloning ability, migration and invasion were researched by MTT assay, colony formation experiment, cell scratch test and Transwell experiment respectively. Dual-luciferase reporter assay was performed. Xenograft experiment was conducted using nude mice. miR-29a-3p, VEGFA, CDC42, PAK1 and p-PAK1 expression in cells/tissues was investigated by qRT-PCR and Western blot. Results miR-29a-3p expression was aberrantly reduced in EC patients, which was associated with poor outcome. miR-29a-3p inhibited EC cells proliferation, cloning formation, migration and invasion (P <  0.05 or P <  0.01 or P <  0.001). miR-29a-3p inhibited CDC42/PAK1 signaling pathway activity in EC cells (P <  0.01). VEGFA expression was directly inhibited by miR-29a-3p. miR-29a-3p suppressed EC cells malignant phenotype in vitro and growth in vivo by targeting VEGFA/CDC42/PAK1 signaling pathway (P < 0.05 or P < 0.01). Conclusion miR-29a-3p inhibits EC cells proliferation, migration and invasion by targeting VEGFA/CDC42/PAK1 signaling pathway.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Juan Hu ◽  
Xing Peng ◽  
Weina Du ◽  
Yichuan Huang ◽  
Chun Zhang ◽  
...  

Background. As a new kind of noncoding RNAs, circular RNAs (circRNAs) have been substantiated to be involved in multiple biological processes. Accumulating studies indicate that circular RNAs (circRNAs) regulate the development of cancers by acting as miRNA sponges. However, the role of circRNAs in endometrial cancer (EC) is rarely reported. This study was aimed at investigating the functional roles of circSLC6A6 in EC. Methods. The qRT-PCR assay was performed to detect the circSLC6A6 expression in EC tissues and cell lines. The luciferase reporter assay was performed to explore the connection between circSLC6A6 and miR-497-5p as well as the connection between miR-497-5p and PI4KB. The colony formation assay, EdU assay, wound healing assay, and transwell assay were performed to examine the proliferation, migration, and invasion of EC cells. The in vivo assay was performed to reveal the function of circSLC6A6 in tumorigenesis. Results. We found that circSLC6A6 was highly expressed in both EC tissues and cells. And circSLC6A6 promoted the proliferation, migration, and invasion of EC cells in vitro. In vivo, circSLC6A6 promoted tumor growth. Besides, a mechanistic study demonstrated that circSLC6A6 could regulate tumor-associated signaling PI4KB/hedgehog pathway by sponging miR-497-5p. Conclusion. This study illustrates that circSLC6A6 plays a role in promoting EC progression via the miR-497-5p-mediated PI4KB/hedgehog pathway. Our study may provide a potential novel biomarker for EC diagnosis or treatment.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2021 ◽  
Author(s):  
Yuhua He ◽  
Shuifang Xu ◽  
Yi Qi ◽  
Jinfang Tian ◽  
Fengying Xu

Abstract BackgroundSmall nucleolar RNA host gene 25 (SNHG25), a long-noncoding RNA, has been well studied in epithelial ovarian cancer. Yet, the specific functions of SNHG25 in endometrial cancer (EC) have not been researched. In this study, we proposed to expose the clinic significance of SNHG25 in EC, and then unravel the regulatory activity of SNHG25 on the tumor-associated phenotype of EC. More interestingly, the possible molecular events occurred when SNHG25 executives its function in EC were explored thoroughly. MethodsWe measured genes expression applying quantitative real-time polymerase chain reaction. The detailed functions of SNHG25 in EC were examined employing loss-of-function experiments. What’s more, we unveiled the regulatory mechanisms among SNHG25, microRNA-497-5p and fatty acid synthase (FASN) with the application of luciferase reporter assay and RNA Immunoprecipitation. ResultsWe verified a high level of SNHG25 in EC through TCGA dataset and our own cohort. Patients with a high SNHG25 level featured shorter overall survival in contrast to patients with a low SNHG25 level. SNHG25 deficient caused tumor-repressing actions in EC cells by decreasing cell proliferation, migration and invasion and promoting cell apoptosis. Furthermore, we certified the function of SNHG25 depletion in impairing tumor growth in vivo. With respect to the mechanisms, SNHG25 sequestered miR-497-5p as a competing endogenous RNA in EC and consequently positively regulated FASN expression. Striking, the decrease of miR-497-5p or increase of FASN could neutralize the modulatory actions of SNHG25 knockdown in EC cells. ConclusionsDepleted SNHG25 hampered the oncogenicity of EC by targeting miR-497-5p/FASN axis. The newly certified SNHG25/miR-497-5p/FASN pathway may potentially have usefulness as a promising target for molecular targeted management.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhendan Zhao ◽  
Zhiling Wang ◽  
Pengling Wang ◽  
Shujie Liu ◽  
Yingwei Li ◽  
...  

Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


Author(s):  
Meng Zhang ◽  
Senlin Zhao ◽  
Cong Tan ◽  
Yanzi Gu ◽  
Xuefeng He ◽  
...  

Abstract Background MEK1/ERK signaling pathway plays an important role in most tumor progression, including colorectal cancer (CRC), however, MEK1-targeting therapy has little effective in treating CRC patients, indicating there may be a complex mechanism to activate MEK1/ERK signaling pathway except RAS activated mechanism. Methods To investigate the clinical significance of IMP3, we analyzed its expression levels in publicly available dataset and samples from Fudan University Shanghai Cancer Center. The effects of IMP3 on proliferation, migration, and invasion were determined by in vitro and in vivo experiments. To investigate the role of IMP3 in colon carcinogenesis, conditional IMP3 knockout C57BL/6 mice was generated. The IMP3/MEKK1/MEK/ERK signaling axis in CRC was screened and validated by RNA-sequencing, RNA immunoprecipitation, luciferase reporter and western blot assays. Results We find RNA binding protein IMP3 directly bind to MEKK1 mRNA 3′-UTR, which regulates its stability, promote MEKK1 expression and sequentially activates MEK1/ERK signaling. Functionally, IMP3 promote the malignant biological process of CRC cells via MEKK1/MEK1/ERK signaling pathway both in vitro and in vivo, Moreover, IMP3−/− mice show decreased the expression of MEKK1 as well as colorectal tumors compared with wild-type mice after treatment with azoxymethane/dextran sodium sulfate. Clinically, the expression of IMP3 and MEKK1 are positive correlated, and concomitant IMP3 and MEKK1 protein levels negatively correlate with metastasis in CRC patients. In addition, MEK1 inhibitor in combination with shRNA-IMP3 have a synergistic effect both in vitro and in vivo. Conclusion Our study demonstrates that IMP3 regulates MEKK1 in CRC, thus activating the MEK1/ERK signaling in the progression of colorectal cancer, Furthermore, these results provide new insights into potential applications for combining MEK1 inhibitors with other target therapy such as IMP3 in preclinical trials for CRC patients.


2021 ◽  
Author(s):  
Haofeng Liang ◽  
Lin Li ◽  
Jianye Tan ◽  
Bingsheng Yang ◽  
Shuang Zhu ◽  
...  

Abstract Background: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents, and accumulating evidence has revealed that microRNAs (miRNAs) exert a crucial part in the progression of OS. Methods: GSE65071 from the GEO database was analyzed and miR-744-5p was found to be the lowest expressed miRNA. Real-time quantitative PCR (qRT-PCR), Western blotting (WB), colony formation assay, 5-Ethynyl-2-Deoxyuridine (EdU) incorporation assay and Transwell migration and invasion assay were performed to examine the effects of miR-744-5p in vitro, Luciferase-reporter assay was performed to detect the interactions between miR-744-5p and its specific target gene. Subcutaneous tumor-forming animal models and tail vein injection lung metastatic models were conducted in animal experiments to detect the effects of miR-744-5p in vivo. Results: miR-744-5p expression was down-regulated in OS cells and tissues. Higher expression of miR-744-5p was related with better clinical prognosis and lower malignancy degree of OS, including cell proliferation, migration and invasion in vitro and vivo. Transforming growth factor-β1 (TGFB1) was negatively regulated by miR-744-5p and could reverse the effects of miR-744-5p on OS proliferation, migration and invasion. The MAPK/ERK signaling pathway was involved in the miR-744-5p/TGFB1 axis. Conclusions: In general, this study suggests that miR-744-5p is a negative regulator of TGFB1, and suppresses OS progression and metastasis via MAPK/ERK signaling pathway.


2019 ◽  
Vol 53 (4) ◽  
pp. 434-442 ◽  
Author(s):  
Wei Wang ◽  
Liang Ge ◽  
Xiao-Juan Xu ◽  
Ting Yang ◽  
Yue Yuan ◽  
...  

Abstract Background Endometrial cancer (EC) is one of the most common gynaecological tumours in the worldwide. Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) promotes cell proliferation, migration and invasion in EC cells. However, the molecular mechanisms of NEAT1 in EC have not been fully clarified. We conducted this study to reveal the function of NEAT1 in EC tissues and cell lines. Materials and methods Cancer and adjacent tissues were collected from EC patients. HEC-1A and Ishikawa cells were cultured in vitro. NEAT1 expression was downregulated by transfecting small hairpin RNA (shRNA) and miR-144-3p was overexpressed by transfecting miR-144-3p mimics. Cell proliferation was detected by MTT assay and colony formation assay. Cell migration and invasion abilities were assessed by transwell assay. A dual-luciferase reporter assay was used to verify the relationship among NEAT1, EZH2, and miR-144-3p. The expression level of EZH2 was measured by Western blot and qPCR. Results NEAT1 was highly expressed in EC tissues and cells. Knockdown of NEAT1 inhibited the proliferation, migration and invasion of EC cells. Additionally, NEAT1 acted as a ceRNA of miR-144-3p, leading to EZH2 upregulation. Overexpression of miR-144-3p suppressed the proliferation and invasion of EC cells. Conclusions NEAT1 promotes EC cells proliferation and invasion by regulating the miR-144-3p/EZH2 axis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng He ◽  
Hang Xiao ◽  
Yixin Cai ◽  
Ni Zhang

Abstract Background Esophageal cancer (ESCA) is one of the most common cancers worldwide and has a very poor prognosis. Hypoxia-inducible factor 1 (HIF1) signaling pathway plays a critical role in tumorigenesis and is therefore considered a potential therapeutic target in the treatment of many cancers. Activating transcription factor 5 (ATF5) facilitates the expression of various genes and has been extensively studied for its potential role in cancer treatment. Methods The expression level of ATF5 in clinic sample was detected by quantitative real time PCR and immunohistochemistry. ATF5 biological function was investigated by western blot, cell cycle analysis, cell viability assay, luciferase reporter assays, colony formation assay, transwell assay, wound healing assay, tube formation assay, and ELISA assay. CHIP and Re-CHIP assay, GST-pulldown, and RNA-sequencing were used to study the cross-talks between ATF5 and HIF1 complex. Mouse xenograft study was utilized to study the correlation of ATF5 and tumor growth in vivo. Student’s t-test or Chi-square test was used for statistical analysis. Results Here, we first found ATF5 was dramatically upregulated in ESCA cancer and related with poor survival time. Next, we found that the expression level of ATF5 had a positive relationship with the proliferation, migration, and invasion ability of ESCA cells. Besides, we innovatively found that ATF5 functions as a novel coactivator in HIF1 transcription complex by binding to HIF1α. Further, we demonstrated that silencing ATF5 phenocopies HIF1α knockdown in tumorigenic properties in vitro and inhibited ESCA tumor angiogenesis and proliferation in vivo. Conclusion Herein, we found ATF5 as a novel component of the HIF1 transcription complex. The findings of the present study may provide new insights into the development of a novel and more efficient therapeutic strategy against ESCA.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs. In this study, we investigated the role of miR-875 in GC. Methods: The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models. Related proteins were detected by Western blot. Results: The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors. Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5p can inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway. In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


Sign in / Sign up

Export Citation Format

Share Document